Collective targeting in rural policies: review of proposed mechanisms and assessment of irrigation infrastructure measures in Emilia- Romagna

Zavalloni M.\(^1\), Raggi M.\(^2\) and Viaggi D.\(^1\)

\(^1\)University of Bologna, Department of Agricultural Sciences, Bologna, Italy
\(^2\)University of Bologna, Department of Statistical Sciences, Bologna, Italy

matteo.zavalloni3@unibo.it
Introduction

- **Topic:**
 - Rural policies on natural resource management
 - Proper target: group of farmers (vs individual farmers)
 - Public good
 - Incentives for coordinated environmental efforts
 - Payment for environmental practices
 - Premium/bonus “if” coordination
 - Minimum participation rules
 - Minimum number of agents
 - Minimum extent of land contracted
Introduction

• Objective:
 1. Review of policy and literature
 2. Potential of Cooperative Game Theory (CGT):
 • Focus on minimum participation rules in rural policy (natural resource management)
 • Effect of threshold on benefits distribution

• Cooperative Game Theory
 • Communication - Binding agreement – superadditivity: pareto efficiency is no problem
 • Focus on the distribution of the benefits
 • Shapley Value (SV): attributes the value of a cooperative venture

• Application to Emilia-Romagna
 • Rural Development Plan measure 125
Background: policy

- **EU (Biodiversity):**
 - Collective implementation of the “greening” constraints
 - Group of farmers as recipients of agri-environment-climate payments

- **Emilia-Romagna** *(water quantity)* incentivizes collective reservoirs
 - Two sets of eligibility constraints for the potential projects: one on the minimum size of the reservoirs (greater than 50000 m3), one on the minimum number of farmers participating (20)

- **Emilia-Romagna** *(Biodiversity):*
 - “environmental contracts”

- **France** *(water quality):*
 - Payments for buffer strips are increased by 20% if at least 60% or the river bank is not cultivated (Dupraz et al., 2009)
Background: literature

• Biodiversity: agglomeration bonus/payment (Parkhurst et al. 2002)
 • Little on bargaining issues
 • Little on the distribution of the benefits
 • Mostly based on Non Cooperative game theory

• Irrigation water (quantity) (Ostrom, 1990)
 • Little on relationship between policy / socio-ecological systems
 • Benefit distribution (Janssen et al., 2011)
Background: literature

• Biodiversity: agglomeration bonus/payment
 • Experiments:
 • Communication (Parkhurst et al. 2002)
 • Network size (Banerjee et al. 2012)
 • Information availability (Banerjee et al. 2014)
 • Mathematical programming model
 • Policy effectiveness (Albers et al., 2008; Dupraz et al., 2009)
 • Global optimization objective function (Bamière et al., 2013; Drechsler et al., 2010),
 • Side-payments (Wätzold and Drechsler, 2013)

• Irrigation water (quantity)
 • Lack of a central coordination (Ostrom, 1990)
Cooperative Game Theory

- Coalitions
- Characteristic function
- Solutions
Cooperative Game Theory

- Coalitions: groupings of players
 - Modelling
 - Minimum participation rules
 - Spatial relations
 - Social relations
 - grand-coalition: when all the players work together
 - coalitions: possible sub-groups
Cooperative Game Theory

- **Characteristic function**
 - Attributes a value to the coalitions
 - Policy incentives
 - **Super-additivity** \(v(N) \geq v(s) + v(t) \)

<table>
<thead>
<tr>
<th></th>
<th>(q^t = 0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(v(A))</td>
<td>5899</td>
</tr>
<tr>
<td>(v(B))</td>
<td>13334</td>
</tr>
<tr>
<td>(v(C))</td>
<td>38080</td>
</tr>
<tr>
<td>(v(A,B))</td>
<td>19566</td>
</tr>
<tr>
<td>(v(A,C))</td>
<td>44383</td>
</tr>
<tr>
<td>(v(B,C))</td>
<td>52010</td>
</tr>
<tr>
<td>(v(A,B,C))</td>
<td>58335</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Super-additivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>(v(A,B) + v(C))</td>
<td>57646</td>
</tr>
<tr>
<td>(v(A,C) + v(B))</td>
<td>57718</td>
</tr>
<tr>
<td>(v(B,C) + v(A))</td>
<td>57909</td>
</tr>
<tr>
<td>(v(A) + v(B) + v(C))</td>
<td>57313</td>
</tr>
</tbody>
</table>
Cooperative Game Theory

- Solution: distribution of the worth
 - \(u_i^* \): worth attributed to the \(i^{th} \) agent in the grand-coalition
Solution: core

The “core”: rationally acceptable grand-coalition worth allocation (Gillies, 1959):

Individual rationality

\[u_i^* \geq v(\{i\}) \quad \forall i \in N \]

Group rationality

\[\sum_{i \in S} u_i^* \geq v(s) \quad \forall s \in S \]

Efficiency:

\[\sum_{i \in S} u_i^* = v(N) \]
The Shapley Value:
 • unique solution
 • surely in the core if convex game (Shapley, 1971, 1952):

\[u^*_i = u^{sv}_i = \sum_{\substack{s \subseteq N \\ i \in S}} \frac{(n-|s|)!(|s|-1)!}{n!} \left[v(s) - v(s - \{i\}) \right] \]

The worth attributed to the \(i^{th} \) player through the SV is given by its average marginal contribution for any possible grouping of the players.
Solution: Shapley Value

- The Shapley Value:
 - unique solution
 - surely in the core if convex game (Shapley, 1971, 1952):

\[
\bar{u}_i^* = u_i^{sv} = \sum_{\substack{s \subseteq N \atop i \in S}} \frac{(n - |s|)!(|s| - 1)!}{n!} \left[v(s) - v(s - \{i\}) \right]
\]

The worth attributed to the \(i^{th}\) player through the SV is given by its average marginal contribution for any possible grouping of the players.
Characteristic function

Problem:
• N farms have to build a irrigation reservoir
• Pooling resources to build the reservoir
• Financial support of the RDP – minimum participation rules
Characteristic function

The value for any possible coalition is given by:

$$\max \left[R - (1 - \alpha P) k(Q_s) \right]$$

Revenues:

$$R = \sum_{i \in s} f^i(Q_i)$$

Costs:

$$k(Q_s)$$

Policy participation:

$$P = \begin{cases} 1 & \text{if } Q_s \geq q^t \\ 0 & \text{if } Q_s < q^t \end{cases}$$

Assume $k(Q_s)$ exhibits economies of scale ($k'(Q_s) > 0$ and $k''(Q_s) < 0$) -> grand-coalition is the most efficient group arrangement
Theoretical analysis

- **Solutions**
 - With financial support
 \[
 f^i_{Q_i} = f^j_{Q_j} = \alpha k^Q_{s*}
 \]
 - Without financial support
 \[
 f^i_{Q_i} = f^j_{Q_j} = k^Q_{s*}
 \]

- \(Q_{s*}^P\): water quantity of coalition financially supported by the policy if no threshold

 \[
 \begin{align*}
 \nu(s) = \begin{cases}
 \Pi^P_s & \text{with } Q_s^* = Q_{s*}^P \text{ if } Q_{s*}^P \geq q' \\
 \Pi^{P,t}_s & \text{with } Q_s^* = q' \text{ if } Q_{s*}^P < q' \text{ and } \Pi^{P,t}_s \geq \Pi^{NP}_s \\
 \Pi^{NP}_s & \text{with } Q_s^* = Q_{s*}^{NP} \text{ if } Q_{s*}^P < q' \text{ and } \Pi^{P,t}_s < \Pi^{NP}_s
 \end{cases}
 \end{align*}
 \]

- Increasing the threshold make the financial support more and more costly up to the point where the coalition withdraw from the policy
Theoretical analysis

- \(v(A) = 0 \)
- \(v(B) = 0 \)
- \(v(C) = 0 \)
Theoretical analysis

v(A) = 0
v(B) = 0
v(C) = 0

Grand-coalition worth
Share attributed to A
Theoretical analysis

- Individual rationality
- Group rationality
- Core

$v(A) = 0$
$v(B) = 0$
$v(C) = 0$
Theoretical analysis

Shapley Value

v(A) = 0
v(B) = 0
v(C) = 0
Theoretical analysis

\[v(A) = 0 \]

\[v(B) = 0 \]

\[v(C) = 0 \]

“Low” threshold:

\[v(B, C) = \prod_s^P \]

\[Q_s^{*,P} \geq q_t, \text{ low} \]

\[P = 1 \]
Theoretical analysis

"Low" threshold:
\[v(B,C) = \prod_s P \]
\[Q_s^{*,P} \geq q^t_{low} \]
\[P=1 \]

"High" threshold:
\[v(B,C) = \prod_s NP \]
\[Q_s^{*,P} < q^t_{high} \]
\[P=0 \]
Theoretical analysis

“Low” threshold:
\[v(B, C) = \prod_s^P \]
\[Q_s^{*,P} \geq q_t^{\text{low}}, \text{low} \]
\[P = 1 \]

“High” threshold:
\[v(B, C) = \prod_s^{NP} \]
\[Q_s^{*,P} < q_t^{\text{high}}, \text{high} \]
\[P = 0 \]
Theoretical analysis

"Low" threshold:
\[v(B,C) = \prod_s P \]
\[Q_s^{*,P} \geq q^t, \text{low} \]
\[P=1 \]

"High" threshold:
\[v(B,C) = \prod_s NP \]
\[Q_s^{*,P} < q^t, \text{high} \]
\[P=0 \]
Data and Scenarios

• Application to the Emilia-Romagna RDP

• Secondary data for revenue functions (Zavalloni et al 2014)
 • 3 farms (different characteristics)

• Construction costs formulated with Consorzio Bonifica Romagna Occidentale

• Scenarios:
 • “Size-rule”: a range of q^t
 • “n-rule”: the minimum number of agents required to have access to the RDP ($n \geq 1$, $n \geq 2$, $n \geq 3$)
 • share of the cost covered by the RDP ($\alpha = 30\%$, $\alpha = 50\%$, $\alpha = 70\%$)
Results – Characteristic function

- Increasing the threshold makes more and more difficult to obtain the financial support (bold numbers)
- Grand-coalition is more and more attractive (brackets)

<table>
<thead>
<tr>
<th></th>
<th>(q^t = 0)</th>
<th>(q^t = 40000)</th>
<th>(q^t = 80000)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(v(A))</td>
<td>5899</td>
<td>4572</td>
<td>4572</td>
</tr>
<tr>
<td>(v(B))</td>
<td>13334</td>
<td>11254</td>
<td>11254</td>
</tr>
<tr>
<td>(v(C))</td>
<td>38080</td>
<td>38080</td>
<td>33921</td>
</tr>
<tr>
<td>(v(A,B))</td>
<td>19566 (2%)</td>
<td>16946 (7%)</td>
<td>16773 (7%)</td>
</tr>
<tr>
<td>(v(A,C))</td>
<td>44383 (1%)</td>
<td>44383 (4%)</td>
<td>40778 (6%)</td>
</tr>
<tr>
<td>(v(B,C))</td>
<td>52010 (1%)</td>
<td>52010 (5%)</td>
<td>50735 (12%)</td>
</tr>
<tr>
<td>(v(A,B,C))</td>
<td>58335 (1%)</td>
<td>58335 (6%)</td>
<td>57781 (11%)</td>
</tr>
</tbody>
</table>
Results – n-Rule

- Shapley value (%)
 - 3 farms
 - Share of financial support: 70%

Farm A

Farm B

Farm C
Results – size rule

Shapley value (%)
- Different minimum participation threshold (size of reservoir)
- 3 farms
- Share of financial support: 70%

Farm A: ≈10%

Farm B: ≈22%

Farm C: ≈67%
Results – size rule

Shapley value (%)

- Farm C
- Different minimum participation threshold (size of reservoir)
- Share of financial support: 70%
Discussion

• Different solutions:
 • Shapley Value
 • Nash / Nash-Harsanyi
 • Nucleolus

• Limitations:
 • No public good:
 • SV assumes that the worth of a given coalition is not affected by the players outside the coalition
 • Further development to address this issue (Macho-Stadler et al., 2007)
 • Difficult to scale up
Conclusions

• Increasing interest from policy makers

• Literature not yet comprehensive

• Cooperative game theory worth further exploring
 • Conditionality rules are not neutral on benefit distributions
 – to take into account in policy formulation
 • Distribution matters in collective actions (Janssen et al 2011)
 • Coalition formation theory
Thanks!

matteo.zavalloni3@unibo.it
Results – Characteristic function

<table>
<thead>
<tr>
<th></th>
<th>$q^t = 0$</th>
<th>$q^t = 40000$</th>
<th>$q^t = 80000$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$v(A)$</td>
<td>5899*</td>
<td>4572</td>
<td>4572</td>
</tr>
<tr>
<td>$v(B)$</td>
<td>13334*</td>
<td>11254</td>
<td>11254</td>
</tr>
<tr>
<td>$v(C)$</td>
<td>38080*</td>
<td>38080*</td>
<td>33921</td>
</tr>
<tr>
<td>$v(A,B)$</td>
<td>19566* (2%)</td>
<td>16946* (7%)</td>
<td>16773 (7%)</td>
</tr>
<tr>
<td>$v(A,C)$</td>
<td>44383* (1%)</td>
<td>44383* (4%)</td>
<td>40778* (6%)</td>
</tr>
<tr>
<td>$v(B,C)$</td>
<td>52010* (1%)</td>
<td>52010* (5%)</td>
<td>50735* (12%)</td>
</tr>
<tr>
<td>$v(A,B,C)$</td>
<td>58335* (1%)</td>
<td>58335* (6%)</td>
<td>57781* (11%)</td>
</tr>
</tbody>
</table>

Check super-additivity:

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>$v(A,B) + v(C)$</td>
<td>57646</td>
<td>55026</td>
<td>50695</td>
</tr>
<tr>
<td>$v(A,C) + v(B)$</td>
<td>57718</td>
<td>55637</td>
<td>52032</td>
</tr>
<tr>
<td>$v(B,C) + v(A)$</td>
<td>57909</td>
<td>56583</td>
<td>55308</td>
</tr>
<tr>
<td>$v(A) + v(B) + v(C)$</td>
<td>57313</td>
<td>53906</td>
<td>49747</td>
</tr>
</tbody>
</table>
Results – size rule

Shapley Value (%)
• Different minimum participation threshold (size of reservoir)
• 3 farms
• 3 different share of financial support

Farm A
- \(\alpha = 70\% \)
- \(\alpha = 50\% \)
- \(\alpha = 30\% \)

Farm B
- \(\alpha = 70\% \)
- \(\alpha = 50\% \)
- \(\alpha = 30\% \)

Farm C
- \(\alpha = 70\% \)
- \(\alpha = 50\% \)
- \(\alpha = 30\% \)
Discussion

• Increasing minimum participation threshold:
 • Increase attractiveness of cooperation
 • Asymmetric effect
 • Threshold on reservoir size: tend to empower bigger farms (up to a given level)
 • Threshold on number of participants: tend to empower smaller farms

• Extension/application to agglomeration incentives
 • Agglomeration payments vs agglomeration bonus
 • Cooperative game theory can address:
 • Spatial element
 • Social interactions