L'analisi delle Politiche Agricole Comunitarie in Italia

Seminario online - 11 marzo 2022

Estimating the CAP greening effect by machine learning techniques: a big data ex post analysis

D. Bertoni, G. Aletti, A. Micheletti, D. Cavicchioli, R. Pretolani Università degli Studi di Milano Dipartimento di Scienze e Politiche Ambientali

Pratiche greening

DIVERSIFICAZIONE DEI SEMINATIVI

AZIENDE 10-30 HA SEMINATIVO: MIN. 2 COLTURE AZIENDE > 30 HA SEMINATIVO: MIN. 3 COLTURE

MIN 5% SUP. SEMINATIVO

MAX 75% SUP. SEMINATIVO

MAX 75% SUP. SEMINATIVO

Pratiche greening

MANTENIMENTO PRATO PERMANENTE

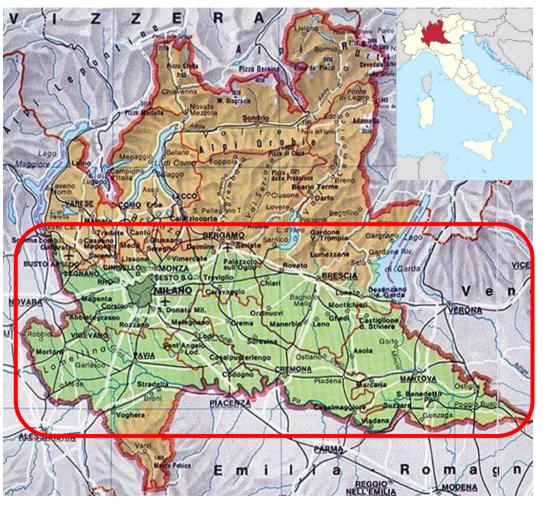
• ECOLOGICAL FOCUS AREAS (EFAs)

AZIENDE >15 HA SEMINATIVO

• Riposo
• Azotofissatrici
• Elementi paesaggistici
• Fasce tampone
• Siepi e fasce boscate
• Catch crops
• Cover crops
•

Obiettivo

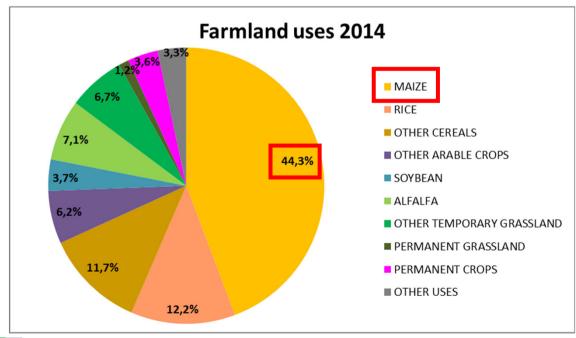
- ➤ Le pratiche greening influenzano potenzialmente le scelte colturali
- > Conseguenze dal punto di vista ambientale ed economico
- ➤ Valutazione ex-post sulle scelte di allocazione delle superfici agricole dopo l'introduzione del pagamento greening (2015)
- ➤ Individuazione di eventuali discontinuità nelle probabilità di transizione delle diverse colture dopo il greening
- > Stima degli effetti del greening su uso del suolo
- > Valutazione degli effetti economici e ambientali
- Dettagliata analisi a livello particellare in Lombardia


Evidenze preliminari

- ➤ Previsione degli effetti del greening mediante simulazioni ex-ante (tecniche di programmazione matematica positiva)
- Spesso basate su dati campionari (FADN)
- ➤ Differente scala spaziale/settoriale
 - Livello UE (Louchichi et al., 2017; Gocht et al., 2017)
 - Livello nazionale (Czekaj et al., 2014)
 - Livello regionale (Solazzo and Pierangeli, 2016; Cortignani and Dono; 2015)
 - Tipologia aziendale (Solazzo et al., 2014; Cortignani et al., 2017)
- > Stima effetti economici (Louchichi et al., 2017; Gocht et al., 2017; Solazzo and Pierangeli, 2016; Cortignani and Dono, 2018)
- > Stima effetti ambientali (Gocht et al., 2017; Solazzo et al., 2016)

Evidenze preliminari

- ➤ Effetto limitato a livello UE (modesta decrescita dei seminativi, soprattutto cereali, vs modesto incremento prati e pascoli e superfici a riposo) (Gocht et al., 2017)
- ➤ Riallocazione di solo il 4,5% della SAU (Louchichi et al., 2017)
- Simulazioni ex-ante in Lombardia
 - Solazzo and Pierangeli, 2016 (-4,6% mais; +5,8% soia; +22,8% medica)
 - Solazzo et al., 2016 (-10% mais; +10% soia; +12% prati)
 - Decrescita della monocoltura di mais in favore di altri cereali, prati e azotofissatrici
 - Azotofissatrici come soluzione per adeguarsi sia alla pratica 'Diversificazione dei seminativi' che alla pratica 'Ecological Focus Areas'
- Rispetto ai precedenti studi la nostra analisi si basa sull'osservazione dell'effettivo comportamento degli agricoltori dopo l'introduzione del greening


Il caso di studio

- Pianura e collina Lombardia
- Montagne escluse (no seminativi)
- Area agricoltura intensiva
- Diffusa monocoltura mais
- Distretti agricoli spazialmente concentrati (riso, latte, biogas...)
- Target potenziale del greening

Dati

- ➤ Campione costante di 640.000 particelle agricole georeferenziate (2011-2017) fonte SIARL/SisCO Regione Lombardia
- > 95% della SAU nell'area di riferimento (730.000 ettari)
- Dati organizzati come catena di Markov
- ➤ 23 usi del suolo agricolo

Dati

Tutte le particelle agricole sono state raggruppate in base all'eligibilità e alla conformità alle pratiche greening dell'azienda che le conduceva nel 2014

- Gruppo 1: Particelle di aziende non eligibili nel 2014 (NON-ELIGIBLE FARMS)
 - < 10 ha a seminativi
 - Aziende esentate per la prevalenza di foraggere o sommerse
- Gruppo 2: Particelle di aziende eligibili e già conformi nel 2014 (ELIGIBLE AND COMPLIANT FARMS)
- Gruppo 3: Particelle di aziende eligibili e non conformi nel 2014 (ELIGIBLE AND NON-COMPLIANT FARMS)

Metodologia: analisi preliminare sulla discontinuità nelle transizioni

➤ Test chi-quadro per indagare l'omogeneità delle probabilità di transizione prima dell'introduzione del greening e la presenza di discontinuità dopo l'introduzione del greening (2015-2017) rispetto al periodo precedente

$$-2\log\Lambda = -2\sum_{t=1}^{T}\sum_{i,j=1}^{m}n_{ij}(t)\left[\log(p_{ij}) - \log(p_{ij}(t))\right]$$

- ➤ Con dataset molto grandi il test chi-quadro è sensibile anche a variazioni molto piccole (che sono fisiologiche)
- \triangleright Utilizzando weighted χ 2 test

Risultati - mais da granella

MAIZE - Non-eligible far	ms	U=92.4795343296747					
Transitions	Q_t	c	DF	p-value	fi ^e q<5	$n_i(t-1)$	$n_i(t)$
2011-12 vs 2012-13	13.691	16.919	9	0.13375	0.400	331.8	332.1
2012-13 vs 2013-14	14.426	16.919	9	0.10795	0.350	332.1	299.8
2013-14 vs 2014-15	2.178	16.919	9	0.98833	0.300	299.8	290.5
2014-15 vs 2015-16	5.705	16.919	9	0.76907	0.300	290.5	260.7
2015-16 vs 2016-17	3.217	16.919	9	0.95507	0.300	260.7	230.8
	·						

MAIZE - Eligible and con	U=164.035091020468							
Transitions	Q_t	c	DF	p-value	fi·eq<5	$n_i(t-1)$	$n_i(t)$	
2011-12 vs 2012-13	8.882	19.675	11	0.63279	0.083	447.2	427.4	
2012-13 vs 2013-14	13.118	19.675	11	0.28568	0.042	427.4	400.9	
2013-14 vs 2014-15	5.298	19.675	11	0.91585	0.167	400.9	361.6	
2014-15 vs 2015-16	4.056	19.675	11	0.96825	0.250	361.6	327.6	

19.675

Nei gruppi 1 e 2 il mais non cambia le sue dinamiche di transizione

MAIZE - Eligible and non	U=171.580061748816						
Transitions	Q_t	C	DF	p-value	fireq<5	$n_i(t-1)$	$n_i(t)$
2011-12 vs 2012-13	7.386	15.507	8	0.49563	0.000	775.5	764.5
2012-13 vs 2013-14	8.614	15.507	8	0.37589	0.000	764.5	735.5
2013-14 vs 2014-15	47.455	15.507	8	0.00000	0.000	735.5	706.3
2014-15 vs 2015-16	3.072	15.507	8	0.92974	0.000	706.3	575.5
2015-16 vs 2016-17	3.934	15.507	8	0.86302	0.000	575.5	514.9

Nel gruppo 3 il mais cambia le sue dinamiche di transizione nella transizione 2014/2015

Risultati simili per silomais, grano, altri cereali, soia, erba medica e riposo

286.7

3.795

2015-16 vs 2016-17

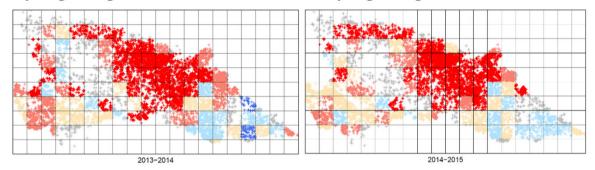
Metodologia: come testare le discontinuità nelle transizioni

Al fine di visualizzare come sono cambiate le probabilità di transizione nel periodo analizzato, abbiamo calcolato per:

- Ogni combinazione di anno e gruppo
- Ogni coltura
- Ogni griglia geografica

the *Gini-Simpson local index* che esprime la probabilità che due particelle estratte casualmente siano coltivate allo stesso modo

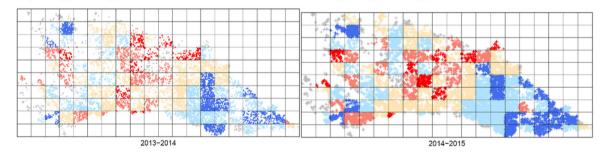
➤ In termini matematici (normalized Gini-Simpson):

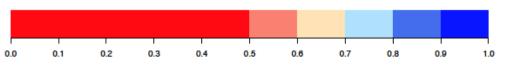

$$D_{maize}^{loc}(t) = \frac{N}{N-1} \left(1 - \sum_{j=1}^{N} \left(p_{maize,j}^{loc}(t) \right)^2 \right)$$

Risultati – mais da granella

Non-eligible farms (group 1):

Before greening introduction


After greening introduction



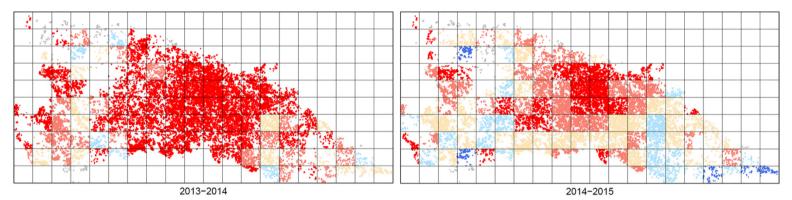
Eligible and compliant farms (group 2):

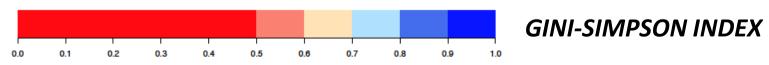
Before greening introduction

After greening introduction

GINI-SIMPSON INDEX

BASSO TASSO DI TRANSIZIONE -> **ALTO TASSO DI TRANSIZIONE**




Risultati – mais da granella

Eligible and non-compliant farms (group 3):

Before greening introduction

After greening introduction

BASSO TASSO DI TRANSIZIONE -> ALTO TASSO DI TRANSIZIONE

Metodologia: stima dell'effetto del greening su uso del suolo

- ➤ Il processo di allocazione del suolo agricolo è stato modellizzato attraverso un modello a scelta discreta, che descrive la propensione degli agenti ad allocare ogni particella alle diverse colture
- La probabilità che una particella *n* sia allocata alla coltura *k* di scelta dipende dalla coltura di partenza, dalla tipologia aziendale, dalla collocazione geografica della particella e da un fattore temporale

$$O_{nk} = f_k$$
 (starting_n, eligible_n, area_n, time)

➤ Abbiamo testato 8 possibili modelli , utilizzando regressione logistica multinomiale e facendo ricorso a tecniche di machine learning

Model 5

 $\forall k, starting, area \quad O_{nk} = b_{0 k, starting, area, eligible} + b_{1 k, starting, area, time}$

Risultati: stima dell'effetto del greening su uso del suolo

FARMLAND USE	Observed area 2014 (hectares)	Observed area 2015 (hectares)	Change in area 2014-2015 (Δ hectares)	Predicted area 2015 (hectares)	Estima greening effect hectare	g net (Δ	Estimated greening net effect (Δ% hectares)	Estimated greening net effect on all groups (Δ % hectares)
	а	b	c=b- a	d	e=b-c	d	f=e/d	g
MAIZE	126.850	102.424	-24.426	116.507	-14	1.083	-12,1%	-7,2%
MAIZE FOR SILAGE	46.495	40.029	-6.466	47.908	-7	7.879	-16,4%	-10,9%
ROTATION								
RYEGRASS+MAIZE	21.458	25.105	3.647	22.281	2	2.824	12,7%	7,1%
FOR SILAGE								
WHEAT	20.869	26.794	5.925	22.672	4	1.122	18,2%	6,8%
BARLEY	6.117	9.701	3.585	7.737	1	1.964	25,4%	12,0%
ALFALFA	4.839	8.863	4.024	5.364	3	3.499	65,2%	6,6%
SOYBEAN	3.840	14.006	10.166	6.066	7	7.940	130,9%	26,0%
FALLOW LAND	556	3.572	3.016	1.086	2	2.485	228,8%	49,6%
	• • • • •	• • • • • •	• • • • • •				• • • • • • • •	• • • • • • • • • • • • • • • • • • • •

TOTAL ELIGIBLE AND NOT

300.922 300.922

COMPLIANT

Risultati: stima dell'effetto economico e ambientale del greening

		All groups		Treated group (group 3 - eligible and not compliant farms)					
	Baseline (x _j _baseline)	Estimated Estimated effect (Δx_j) effect $(\Delta \% x_j)$		Baseline (x _{j_baseline_gr3})	Estimated effect (Δx _j _gr3)	Estimated effect (Δ%x _j _gr3)	Reduction cost per unit of effect $(\in \Delta x_{j_g} gr3^{-1})$		
	а	b	С	d	e	f	g		
Inputs									
Nitrogen (kg·ha ⁻¹)	121,4	-0,95	-0,78%	126,0	-2,29	-1,82%	5,5		
Water (m ³ ·ha ⁻¹)	1.041	0,19	0,02%	1.085	0,45	0,04%			
Emissions									
CO_2 (tons·ha ⁻¹)	0,99	-0,026	-2,64%	1,20	-0,064	-5,30%	198,0		
N ₂ O (tons CO ₂ eq·ha ⁻¹)	1,25	-0,036	-2,88%	1,52	-0,087	-5,72%	144,5		
CH ₄ (tons CO ₂ eq·ha ⁻¹)	0,95	0,008	0,80%	0,44	0,018	4,15%			
CO ₂ eq (tons·ha ⁻¹)	3,19	-0,055	-1,71%	3,17	-0,132	-4,18%	95,1		
Monetary values Gross margin (€·ha ⁻¹) Gross margin + coupled	1.356	-5,89	-0,43%	1.274	-14,28	-1,12%			
payments (€·ha ⁻¹)	1.375	-5,19	-0,38%	1.284	-12,59	-0,98%			

Conclusioni e Policy implications

- > Analisi ex-post condotta in un'area ad agricoltura intensiva
- > Utilizzo di un big data di particelle agricole
- Controllo di dimensione spaziale e temporale
- ➤ Il greening ha rappresentato un elemento di forte discontinuità nel contesto lombardo dal momento che molte aziende non erano precedentemente conformi agli impegni
- Necessità di un'approfondita analisi costi-benefici per evidenziare quale sia il trade-off fra benefici ambientali e i costi di adeguamento delle imprese agli strumenti della nuova PAC 2023-27
- > Tenere conto anche degli effetti sulla food security
- BCAA 7: Rotazione delle colture
- ➤ BCAA 8: Percentuale minima della superficie agricola destinata a elementi o zone non produttive

Grazie per la vostra attenzione

Danilo Bertoni Università degli Studi di Milano Dipartimento di Scienze e Politiche Ambientali(ESP)

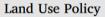
danilo.bertoni@unimi.it 02/50316465

Environmental Science and Policy 119 (2021) 44-53

Contents lists available at ScienceDirect

Environmental Science and Policy

journal homepage: www.elsevier.com/locate/envsci


Estimating the CAP greening effect by machine learning techniques: A big data ex post analysis

Danilo Bertoni, Giacomo Aletti, Daniele Cavicchioli*, Alessandra Micheletti, Roberto Pretolani

Land Use Policy 79 (2018) 789-800

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/landusepol

Farmland Use Transitions After the CAP Greening: a Preliminary Analysis Using Markov Chains Approach

Danilo Bertoni*, Giacomo Aletti, Giulia Ferrandi, Alessandra Micheletti, Daniele Cavicchioli, Roberto Pretolani

Department of Environmental Science and Policy, University of Milano, via Celoria 2, 20133, Milano, Italy

