Knowledge intensification: a new frontier

11th June 2015

Emeritus Professor Allan Buckwell

Policies for knowledge intensification: an EU agricultural perspective, Agriregioni Europa, Ancona
Knowledge intensification: a new frontier (?)

1 Start with Sustainable Intensification (SI):
 i. why
 ii. and what it means for Europe.

2 The multiple pathways of sustainable intensification:
 i. for commercial agriculture
 ii. for the marginal agricultural areas.

3 Two foci for knowledge intensification:
 i. Research on environmental limits for agriculture
 ii. Benchmarking farm-level environmental performance.
1 (i) Why sustainable intensification?

- **Global food security** in context of continuing population and economic growth and harmful climate change
 - Most growth in food demand will be in developing countries
- Much world agriculture is economically weak and environmentally damaging, including EU, including UK.
- To avoid unacceptable further destruction of ecosystems the next increment in output must come mostly from existing agricultural land rather than bringing more land into agriculture
- Hence **sustainable intensification**: more food and conservation outputs from the existing agricultural area, via improved resource efficiency
Starting from **global food security**, this requires strong action on both:

A. Consumption challenges: waste, diets, health
 - *Policy instruments*: targets, information, economic, regulation
 - *Policy subjects*: food chain, food service, consumers

and

B. Production challenges: productivity, water, soil, biodiversity, climate and cultural landscape
 - *Instruments*: agricultural, environmental & research policy
 - *Subjects*: farmers, upstream & downstream industries, researchers/advisers and educators

SI inherently refers to production, but this word should embrace all eco-system services not just the provisioning services of food & energy
1 (ii) What role for EU agriculture under Sustainable Intensification?

- Most of the additional global demand will be outside Europe
- EU agriculture is amongst the most intensive in the world
- EU has a high global footprint as it imports feeds and beverages

The developments of the last 50 years in the EU have been based on intensification of agriculture: forest, wetlands and grassland areas are increasing and agricultural area is decreasing.

This intensification has created serious environmental damage

Therefore SI in the EU implies

emphasis on sustainability whilst maintaining agricultural productivity growth
1(ii) Definition of Sustainable Intensification of agriculture

- **Sustainable Intensification** means finding a development path which simultaneously improves the productivity & environmental management of agricultural land.

- It is a goal or aspiration requiring more **knowledge intensive** and integrated land management.
1 (ii) Deconstructing SI: intensification

- **Intensity** is always a ratio, for SI land is the denominator.
 \[\text{inputs/ha and outputs/ha} \]
- well defined & measurable but popularly denigrated!
- It should apply to conservation outputs/ha as well as agricultural outputs/ha
- **Knowledge per hectare** is the key – this will be embodied in capital, labour and management
- Task is to detoxify or destigmatise “intensive”
1 (ii) Deconstructing SI: sustainable

• **Sustainable**: not precisely defined or measured but universally loved!

• Brundtland (1987) “meeting the needs of the present generation without compromising the ability of future generations to meet their own needs”

• Unsustainable systems undermine their own indefinite continuation

• 3 dimensions: economic, environmental and social; none pre-eminent, each multi-dimensional & location specific

• It implies the existence of limits – thresholds – tipping points – irreversibilities, yet practically no evidence on these
2 Multiple pathways for SI, examples

A Highly virtuous
B Agriculturally beneficial
C Environmentally beneficial
D Trade-off for food
E Trade-off for environment (e.g. organic conversion)

The food - environment production possibilities frontier (a-b-c-d-e-f)
2 How much EU agriculture is unsustainable?

- Is it none? All? Some? In what ways?
- Simplified hypotheses – allegations of
 - Environmental unsustainability of commercial agriculture
 - Soil erosion and declining fertility; water pollution, air pollution by GHG & NH₃, biodiversity & landscape degradation.
 - Economic & social unsustainability of marginal farming
 - Non-viable holdings, high dependence on subsidy, land and village abandonment.
 - Perhaps significant intermediate areas with any/all of these challenges
Identifying environmental unsustainability

- **Thresholds?**
 - Too hot, dry, salt, acid to grow crops & tend livestock
 - Complete soil erosion (OM oxidation, water, wind, sea)

- **Warning indicators:**
 - Depleting soil fertility, e.g. soil organic matter
 - Yield / productivity decline (despite efforts)
 - Biodiversity loss? Pollination failure, what else?

- **Are there identifiable thresholds here? Why haven’t they been identified?** Blum’s work on soils.
Identifying economic unsustainability

• Thresholds?
 – Not individual business failure, assets pass to others
 – \(\therefore\) it is asset/land abandonment
 – or land farmed to destruction (US dustbowl, Kazakh cotton)?

• Warning indicators?
 – More than just low incomes
 – Non-viable, loss-making holdings, hi dependence on subsidy

• What did we do for traditional industries facing this?

• Is land management different? Why?
 – Environmental provision, open managed landscape
 – Village depopulation if diversification opportunities insufficient

• This tells us the nature (and scale) of the required intervention
Identifying social unsustainability

• **Thresholds?**
 – Village depopulation, abandonment

• **Warning indicators?**
 – Aging village population, lacking services
 – Insufficiently diversified economic base, lack of jobs
 – Outflow of young people
2 (i) SI development paths for commercial agriculture

• **For some** areas/farming systems, must reduce intensity of agricultural output: to reduce intensity of negative impacts, and perhaps increase ratios such as SOM/ha or biodiversity (path E)
 – Examples farming in chronic nutrient surplus areas, these are mapped, are farmers aware they live in them?
 – How to sell this message? What policy mechanisms? We have regulation AND payment for compliance, yet not working (?)

• **For most** or all, this is a matter of reducing negative externalities & increasing positive externalities whilst maintaining agricultural productivity growth (paths A, B and C)
 – The CAP debate of the last decade has been about how to do this: current tools XC, Greening and AES.
2 (ii) Wide scope for SI given variability of farm environmental performance

- E.g. wide variability in biodiversity vs crop intensity
- Implies large scope to improve environmental performance at each level of productivity if each farm could approach the frontier F-F’

From Data on Germany from Geiger et al (2010)
2 (ii) Development paths for marginal agriculture

• This is mostly the challenge of finding ways of incentivising and rewarding the provision of public environmental services

 – Much possible via the local, traditional, slow, organic, high quality products (and other rural services)

 – But the heavy lifting may have to be done by publicly paid supports for the non-marketed ecosystem services:
 • Carbon sequestration
 • Flood protection, water infiltration, filtration & storage
 • Biodiversity, habitat and cultural landscape
 • Plus payments for ‘being there’ re-named Less Favoured Area payments
3 Why are we struggling with SI?

- Environmentalists misinterpret intensity
- Farmers not convinced their farming is unsustainable
 - There is very little convincing evidence to say they are wrong, almost no attention to specifying and identifying environmental limits and evidencing our proximity to them
3 (i) KI research challenge: environmental limits

- Time to test real meaning of the word sustainable
- If limits have been reached or are being approached then the land owners and managers really should know about this.
- Conceptualisation of and identification of environmental limits – preferably at farm and field level
 - At what, if any, point in soil erosion, soil OM decline, P concentration, temperature rise, precipitation fall, loss of pollinators or other biodiversity threaten productivity?
 - The nearest to ‘limits’ we have are the regulatory thresholds, and these are widely not observed.
Agriculture and Land Management

3 (ii) Knowledge exchange challenge; farm level enviro benchmarking

- Farm management economics has established widely available and used concepts, measurements and benchmarks for farm economic performance.
- Policy has changed in the last 20 years to emphasise the environmental market failures, yet the collection and analysis of farm environmental performance and data has hardly started.
- Energy efficiency, water use efficiency and GHG emissions now beginning, but nothing on soil and water quality or biodiversity.
- What is not measured will rarely be managed.
- There is every reason to expect at least as much variability in environmental performance as economic performance.
- One remedy: systematic inclusion of environmental measures in FADN.
Tentative conclusions

• Sustainable Intensification *is* a useful, globally based, concept for a better balance between food production and environment.

• EU emphasis: maintain agricultural productivity **growth** + **step change in environmental performance**

• If we stick to the S word, then more research effort is required to identify and communicate existence & location of **thresholds at farm level** – this is missing knowledge

• Aside from ‘limits’ we will not get farmers to better manage environmental media/natural capital unless we **measure and benchmark** it more systematically. This is the priority task for knowledge intensification in my view.
If you have been . . .
thanks for listening!

Abuckwell@ieep.eu

Reference