Toward a multiple outcome impact assessment of research in agriculture

Bartolini Fabio¹, Brunori Gianluca¹, Coli Alessandra², Magrini Alessandro¹ Pacini Barbara³

1. Department of Agricultural, Food and Environmental Sciences
2. Department of Economics and Management
3. Department of Political Sciences

Ancona, 12 June 2015
outline

• Impresa – Research question
• Background
• Paper objectives
• Proposed methodology
• Preliminary results
• Discussion
Research questions - Task 4.2

• General objective of T4.2 (Unipi Task leader)
 – What is the adjusted impact of agricultural research expenditure taking into account both research objectives and sustainability of agricultural systems

• Specific objectives
 – How to estimate multiple impacts of agricultural research expenditure?
 – How to evaluate research priorities /objectives over time?
 – How to measure and incorporate environmental and social dimensions on the estimation of research expenditure impacts?
Background (1)

- Large literature deals with estimation of research impact on productivity measure (see Alston et al. 2000; Alston et al., 2011; Pardey et al., 2012)
- Several papers investigate limits of productivity in measuring sustainability of agricultural systems (Byerlee and Murgai and 2001)
 - TFP does not take into account non-market outputs and inputs (positive and negative externalities) Repetto et al., 1996; 1997;
 - Research on Agriculture does not pursue only productivities objectives (Richards 2004).
- Several papers develop an adjusted productivity measures
 - Measurement of TSFP (total social factor productivities) Eg. Ehui and Spencer 1993 computes TFP for productions in Nigeria with a quantification of nutrients applied and extracted
 - Nanere et al., 2007 adjusted TFP incorporating environmental impact of soil erosion for the Australian Agriculture
Background (2)

• Ideally assessment of research investments should be evaluated vis-à-vis the research objectives/priorities
• but
 – Research priorities/objectives change over time and across countries
 – Research may just shift declinations
 • i.e. increase productivity vs sustainable intensification
 – New research objectives may arise
 • i.e. Bio-economy
• Changing research objectives implies enlarging/prioritizing outcome/impact indicators
• More complex pathways form research to impact
Background (3)

- External drivers
- Human resources
- Innovation & entrepreneurship
- Competitiveness/productivity
- Consumer surplus
- Public goods
- Well-being
- Education
- Intellectual property
- Applications; patents; publications
- Knowledige creation

Adapted from Campbell et al., 2013
Paper Objective

• General objective
 • Develop a methodology to assess impact of agricultural research expenditure taking into account both research objectives and multiple impacts of agricultural research

• Specific objectives
 • How to evaluate research priorities /objectives over time?
 • How to measure and identify multiple impacts of agricultural research?
 • How to characterise linkages between impacts and research priorities
Proposed methodology

• Three steps
 – A) Identification of research priorities across EU countries
 – B) Identification of impacts indicators
 – C) Relating priorities with impacts
A) Identification of Research Priorities

• **Approach**
 - Textual cluster analysis using word similarities to identify groups of projects with similar objectives
 - Attribution at the category of research priorities by word frequency

• **Data used**
 - No data available about research priorities across EU countries
 - Comparable data from EU projects FP4 –FP7 from cordis database
 - Data about financial contribution, abstract, duration, partner countries involved, subject, funding schemes
B) Selection of outcome measurements

• Dynamic factor analysis
 – Decompose multivariate time series into the sum of a reduced number of common trends and random noise
 – DFA quite new in statistical analysis and allows one to work with few observations taking into account changes across space and time

• Data used
 – Data from EUROSTAT concerning variables associated to economic, social and environmental dimensions
 – Assuming the existence of three factors
C) Relating research priorities to impacts

• Cograduation analysis
 – first insight of the direction of the association between research priorities and results of factor analysis can be obtained (Spearman’s rho)
 – Non parametric test based on ranking of two variables
Preliminary results

EU research objectives – NABS2 code

Expenditure for Agricultural project in FP4-FP6*

- Control and care of the environment
- Social structures and relationships
- Human health
- Animal Products
- Fishing and fish-farming
- Crops
- Forestry and timber production
- Food technology
- Renewable energies
DFA – factor loadings

Factor 1: Income and employment

Factor 2: Food industry and added value

Factor 3: Productivity and consumptions

Variables

- REAL_INCOME_AGRIC (F1+)
- ENERGY_PP_rel (F1+)
- EDU_EMPL_MALE (F1+)
- EDU_EMPL_FEMALE (F1+)
- LABOUR_FORCE_AGRIC_SALARIED (F2+, F2-)
- HH.exp (F1-, F2+, F3-)
- LABOUR_FORCE_AGRIC_TOT (F2-, F3+)
- GVAA_quota (F2-, F3+)
- TFP_INDEX (F3-)
- LABOUR_FORCE_AGRIC (F2+, F2-)
- LABOUR_FORCE_AGRIC_TOT (F2-, F3+)
- GVAA_quota (F2-, F3+)
Research priorities by country

share of budget between FP4

AT BE CZ DE DK GR ES FI FR IE IT NL PL PT SE UK

sh_f1 sh_f2 sh_f3
Research priorities by country

GBAORD for each factor (1994-1998)
Cograduation tests

<table>
<thead>
<tr>
<th>factor</th>
<th>year</th>
<th>w_f1</th>
<th>w_f2</th>
<th>w_f3</th>
<th>w1_gbaord</th>
<th>w2_gbaord</th>
<th>w3_gbaord</th>
</tr>
</thead>
<tbody>
<tr>
<td>f1</td>
<td>2005-2014</td>
<td>0.1206</td>
<td>-0.3176</td>
<td>0.3794</td>
<td>-0.1441</td>
<td>-0.2029</td>
<td>-0.1118</td>
</tr>
<tr>
<td>f2</td>
<td>2005-2014</td>
<td>-0.1059</td>
<td>0.1824</td>
<td>-0.1</td>
<td>-0.6765***</td>
<td>-0.5765*</td>
<td>-0.5882*</td>
</tr>
<tr>
<td>f3</td>
<td>2005-2014</td>
<td>0.2059</td>
<td>-0.0882</td>
<td>0.0353</td>
<td>-0.8618***</td>
<td>-0.7676***</td>
<td>-0.7294***</td>
</tr>
<tr>
<td>f1</td>
<td>2005-2009</td>
<td>-0.0059</td>
<td>-0.0971</td>
<td>0.1735</td>
<td>-0.2765</td>
<td>-0.3029</td>
<td>-0.2529</td>
</tr>
<tr>
<td>f2</td>
<td>2005-2009</td>
<td>-0.1176</td>
<td>0.1412</td>
<td>-0.0382</td>
<td>-0.5794</td>
<td>-0.5059*</td>
<td>-0.4824</td>
</tr>
<tr>
<td>f3</td>
<td>2005-2009</td>
<td>0.2029</td>
<td>-0.1118</td>
<td>0.1059</td>
<td>-0.8265**</td>
<td>-0.7382***</td>
<td>-0.6735*</td>
</tr>
<tr>
<td>f1</td>
<td>2010-2014</td>
<td>0.1441</td>
<td>-0.3765</td>
<td>0.4706**</td>
<td>-0.0559</td>
<td>-0.1265</td>
<td>-0.0176</td>
</tr>
<tr>
<td>f2</td>
<td>2010-2014</td>
<td>-0.0882</td>
<td>0.1824</td>
<td>-0.1118</td>
<td>-0.7059**</td>
<td>-0.6059**</td>
<td>-0.6147**</td>
</tr>
<tr>
<td>f3</td>
<td>2010-2014</td>
<td>0.2471</td>
<td>-0.0647</td>
<td>-0.0941</td>
<td>-0.9294***</td>
<td>-0.8471***</td>
<td>-0.8176***</td>
</tr>
</tbody>
</table>
Discussion

• Preliminary and rough analysis
• Methodology seems feasible but needs improvements
• Relevant option to find proxy of research priorities expenditure
• Use of latent variables seems suitable when addressing multiple impacts
• Control for other effects (option to use meta-model for relevant confounding variables – i.e. policy; crisis etc.)
• Try to relational model taking into account expected path (SEM model)
• Sisyphean task(?)
 – proxy of research priorities/proxy of research impacts/»proxy» of research expenditure....
Thank you

fabio.bartolini@unipi.it