The EU agricultural and agro-environmental policies: economic methods for impact assessment

Paolo Sckokai
Università Cattolica, Piacenza, Italy
3rd AIEAA Conference, Alghero, 25-27 June 2014
Outline of the presentation

- Background and motivation
 - The “greening” of EU policies for agriculture
 - The increasing specificity of policies
- Impact assessment tools (*not exhaustive list…*)
 - Structural econometric models
 - Math programming models
 - Interlinked bio-economic models
 - Counterfactual techniques
 - Spatial econometric models
- Data issues
- Empirical results of the available studies
 - “Short” literature review on the impact of “green” policies
- Conclusions: research agenda
Background: the evolution of EU policies (1)

- One of key features of the evolution of the CAP is its “greening” (i.e. increasing attention to the environmental impact of agriculture)

- This “greening” of the CAP goes back to the 1992 MacSharry reform, in which several “environmental” objectives were made explicit:
 - Promote more extensive agricultural techniques (i.e. prevent negative impact on environment)
 - Recognise the multifunctionality of agriculture (i.e. recognise the positive impact on environment)

- The objectives were refined and expanded in the following reforms:
 - Food safety and animal welfare (Agenda 2000)
 - Sustainable agriculture and food production (Fischler Reform)
The development of environmental objectives in the CAP led to the development of new policy tools:

- **MacSharry reform (1992):**
 - Agri-environmental programs (AEP)
 - Afforestation programs

- **Agenda 2000 reform:**
 - Clear separation of first and second pillar
 - New financing rules

- **Fischler reform (2003):**
 - Cross-compliance (link direct payments to agronomic, ecological, animal welfare requirements)

- **CAP 2020 reform**
 - Green payment (stronger linkage to environmental requirements)
Several EU environmental policies (not part of the CAP) also strongly affect agricultural production

Water pollution policies
- Nitrates directive (ND)
- Water framework directive

Nature preservation policies
- Natura 2000 sites (with strong land use restrictions)
- Habitats directive and birds directive

Animal/plant health policies
- Animal welfare legislation
Background: the new EU policy framework

- In addiction to the “green” trend, EU policies affecting agriculture have also changed their “nature”:
 - From price support to direct payments
 - Direct payments linked to compulsory individual compliance of some environmental rules
 - Additional payments linked to voluntary individual participation in some specific programmes (agri-environmental programmes)
 - Compulsory rules affecting land use (Natura 2000) or requiring specific farm investments (animal welfare, nitrates directive)
 - Implementation of policies differing among Member States (MS) and among regions inside each MS
 - Policies becoming territorial specific and farm specific
Implications for impact assessment

- Impact assessment methods should analyse policy impact at the farm level. Typical research questions:
 - Impact of environmental standards/restrictions on farm costs/farm profits/land use
 - Impact of agri-environmental schemes on farm profitability
 - Impact of agri-environmental schemes on the use of chemicals, on crop diversification, on landscape...

- When addressing environmental issues, the scale of impact assessment should be the territorial level (provinces/regions). Typical research questions:
 - Environmental impact of agricultural activities in a given region, measured by specific indicators

- The difference between voluntary and compulsory programs (i.e. AEP vs. Nitrates directive) should be properly considered
Methods: structural econometric models (1)

- **Farm level econometric models** for policy evaluation are based on different assumptions:
 - A primal approach (functional form representing technology)
 - A dual approach (functional form representing farm behaviour: cost function, profit function)
 - Both approaches can be extended to account for risk preferences (i.e. stochastic technology; expected utility function)

- **The procedure:**
 - Start from farm behavioural relationships, including policy variables among determinants (but we need a past history)
 - Derive estimable forms of fundamental economic relationships (i.e. output supplies, input demands, profit)
 - Use estimated parameters/elasticities to simulate policy changes
Methods: structural econometric models (2)

- For the specific case of the impact of environmental policies we have very few studies:
 - Sauer et al (2012) analysed the impact of both AEP and the ND on technical and allocative efficiency using a Distance Function
 - Lacroix and Alban (2011) used a NQ profit function for analysing land use choices and nitrogen runoff (against the rules of the ND), using advanced panel data techniques
 - Nauges and Laukkanen (2012) used a NQ profit function to analyse the impact of AEP on input use (fertilisers) using a two-stage estimation procedure

- To our knowledge, none of these models has considered the issue of uncertainty
- All models experienced serious data limitations
Methods: Math Programming (1)

- Farm-level math programming models for policy evaluation are mainly based on PMP:
 - Idea: observed activity levels correspond to the optimum choice which maximizes the objective function of the decision maker subject to some constraints
 - Environmental policies are typically represented by one or more constraints or by distinguishing “green” activities

- The procedure:
 - Step 1: set up the farm optimisation problem with resource/environmental constraints and calibration constraints
 - Step 2: derive a multi-output non-linear cost function (using dual values), and estimate the parameters of such function using appropriate techniques (i.e. maximum entropy)
 - Step 3: use this function to recover a calibrated non-linear programming model which reproduces exactly the base period activity levels
Methods: Math Programming (2)

- For the specific case of the impact of environmental policies we have several examples:
 - Rohm and Dabbert (2004) are the first to use PMP for evaluating AEP, distinguishing AEP crops from standard crops. A similar approach is used in Buysse et al (2007)
 - More recently Mosnier (2009) used PMP introducing yield risk in a mean variance framework for analysing AEP, while Bamiere et al. (2011) introduced spatial analysis while analysing the birds directive

- MP models carry several limitations, including again the “crude” way of accounting for risk
- Data limitations is still a problem
Methods: Interlinked bio-economic models

- Interlinked bio-economic models for policy evaluation are based on:
 - A PMP model for the economic part, providing the impact of policy changes on economic variables (i.e. land use, output), given exogenous prices
 - Environmental constraints are represented as in any PMP model
 - Results of PMP models are converted in a measure of “environmental pressure” through bio-physical models (involving information on soil conditions, weather, impact of agronomic practices….)
 - Such measures are used to evaluate environmental conditions at the territorial level
 - See Jacquet et al (2011) for an example
Methods: Counterfactual techniques (1)

- Counterfactual econometric techniques are becoming a reference for policy assessment.
- They are also strongly supported by the European Commission services (EU Commission, 2012).
- There are several variants of these methods:
 - Propensity Score Matching (PSM): econometric procedure for evaluating the impact of a treatment in a non-experimental setting, i.e. the “treated group” (farms subject to a policy measure) vs. the “control group” (farms not subject); the treatment may be voluntary or compulsory.
 - Difference in Difference (DID): used for evaluating the impact of a treatment (ATT) before and after its introduction (combined with PSM it allows to control for selection bias on both observed and time-invariant unobserved covariates).
 - Regression Discontinuity Design (RDD): suggested when the policy measure is exogenously enforced.
Methods: Counterfactual techniques (2)

- Using these techniques, no functional form specification is required, but no specific behavioural assumption is postulated (ad-hoc models)
- Several studies have been published in recent years:
 - Most EU studies have analysed the impact of AEP (Pufhal and Weiss, 2009; Chabé-Ferret and Subervie, 2013) or the impact of cross-compliance measures (Jaraitė and Kažukauskas, 2012), typically combining PSM and DID
 - North-America studies have analysed similar policy measures: agri-environmental advisory activities in Canada (Tamini, 2011), and various land conservation programs (Liu and Lynch, 2011; Lawley and Towe, 2014), again combining PSM and DID
 - To our knowledge, no RDD study is available in the area of farm policy evaluation
Methods: Counterfactual techniques (3)

- All the above studies have faced several problems and limitations:
 - Data limitations: one of the main problems is that some farm-level environmental performances are typically evaluated in terms of expenditure changes (i.e. expenditure on fertilisers or pesticides)
 - Studies analysing the impact on economic performances of farms (i.e. gross margins) have found several contradictions (i.e. voluntary programs leading to a reduction in gross margins)
 - Uncertainty faced by farmers in the decision of joining the program is not explicitly considered
 - No studies available on compulsory policies like the ND (only cross-compliance is evaluated with these methods)
Methods: Spatial econometric techniques (1)

- Spatial econometric techniques are becoming increasingly popular in several economic research areas (i.e. regional sciences)

- Such methods seem rather promising, since they allow to consider several peculiar aspects of the environmental impact of policies:
 - spatial dimension of some phenomena such as the urbanization and the agglomeration of farms in space
 - possible positive or negative externalities between contiguous territories
 - the geographical variation in the implementation, and the impact, of policy measures

- Farm level data need normally to be integrated with territorial data on environmental indicators
Methods: Spatial econometric techniques (2)

- Available studies are rather scarce in the area of farm policies:
 - On the EU, a few working papers are available
 - One paper presented in this conference last year (Marconi et al, 2013) on the impact of AEP on nitrogen use, and a few others to be presented this year
 - A few articles in the North American literature, focused on environmental issues (climate change, nitrogen use) but not specifically on policy evaluation

- Note however that also these methodologies are basically ad-hoc models (no specific behavioural assumption is postulated)
Data issues (1)

- The problems of the FADN database are well known. The following are especially relevant for the analysis of agro-environmental policies:
 - Quantities of variable inputs, including chemicals (fertilisers, pesticides), are missing; only expenditures are available, with no disaggregation (i.e. Nitrogen fertilisers vs. others)
 - Soil and weather variables are not available
 - Investment data are not very detailed (for policies requiring investments, like ND or animal welfare, more details are needed)
 - Subsidies for AEP (and also for investments) are not disaggregated by type of policy
 - Longer permanence of farms in the sample would be useful for making advantage of panel data techniques and for developing dynamic models
Data issues (2)

- For spatial analysis, we need additional data at the territorial level for environmental indicators

- Possible sources are:
 - Eurostat
 - Institute for Environment and Sustainability-JRC (a lot of work in characterising territories from the point of view of environmental indicators)
Results of available studies

- Broad positive judgement of the impact of AEP from papers applying different methodologies:
 - Positive impact on preservation of habitats/landscapes
 - Positive impact on crop diversity and grassland coverage
 - Reduction of chemical use (that in most cases is chemical expenditure), but this result is controversial
 - Mixed results on the impact on gross margins, including the payments (see the contradictions discussed above)

- Less results available on other issues, especially on compulsory programs:
 - Cross-compliance reduces profitability
 - Very few results on ND or animal welfare
Conclusions: Research Agenda (1)

- In general, studies on the impact of agro-environmental policies are still scarce if compared to those on price policies/direct payments.
- On EU policies, most papers have analysed AEP, while much less attention has been devoted to other policies (i.e. ND, animal welfare).
- We expect a lot of interest in simulating/evaluating the impact of the “green” payment.
- Results of the available studies cannot be considered conclusive, especially because of their limitations.
Conclusions: Research Agenda (2)

- Among the limitations, one should consider:
 - Data limitations (typically linked to the features of the FADN database)
 - Limitations of structural models: they do not properly account for uncertainty (well established in price/payment policy analysis)
 - Limitations of ad-hoc models, since they do not refer to a specific behavioural assumption

- One of the most promising area is that of spatial analysis (spatial econometrics)
 - It is virtually unexplored and seems particularly suitable for environmental policy issues
 - It can take advantage of advanced panel data techniques for econometric analysis
 - But it needs supplementary data at the territorial level
Thanks for your attention

(…..and thanks to Linda Arata for assistance…….)
References (1)

References (2)

References (3)

