The Capitalisation of Fixed per hectare Payment into Land Rental Prices: a Spatial Econometric Analysis of Regions in EU

Guastella G, Moro D, Sckokai P and Veneziani M

Dipartimento di Economia Agroalimentare, Università Cattolica, Piacenza, Italy

“Feeding the Planet and Greening Agriculture: Challenges and opportunities for the bio-economy”
25-27 June, 2014
Alghero, Italy
Motivation

- As a consequence of the introduction of the decoupled payments scheme in the UE, interest is growing on the capitalisation effect.
- Many studies approach the issue using farm-level data, focusing on either land rents or land market prices, usually employing data for a single country or region.
- Farmland rents (the dependent variable) are however characterized by a large heterogeneity which is unobservable in covariates to the largest extent (characteristics of land, presence of buildings, …).
- In addition agricultural productivity and payments refer to total land, not rented land only.
- In summary, there are non-negligible identification problems in the use of farm level data.
- This research provides a different view, approaching the capitalisation effect from a territorial perspective, in an attempt to mitigate such identification problems.
A Territorial approach

- Different studies have attempted to empirically assess the incidence of EU payments on land prices (Patton *et al*., 2008; Breustedt and Habermann, 2011; Ciaian *et al*., 2011; Ciaian and Kancs, 2012; Guastella *et al*., 2013) using farm level data.
- In the EU, the study by Kilian *et al*. (2008) is the only using municipality data on farmland rents to estimate the capitalisation decoupled subsidies.
- The interest in using territorial data is growing because, following the 2003 reform, agricultural payments are expected to converge to fixed per-ha amounts at the regional level.
- One can reasonably expect the cross-regional variation to be substantially more relevant than the variation between farms in the same region.
The theoretical model

Let

\[\pi_i = \sum_{k=1}^{K} p_k y_{ik}(a_{ik}) a_{ik} + g \left(\sum_{k=1}^{K} a_{ik} \right) - r \left(\sum_{k=1}^{K} a_{ik} \right) \]

represent the profit function for the representative farmer in the region, where

- \(\pi \) is the total profit
- \(p_k \) is the price of the \(k^{th} \) output
- \(y \) is the per ha productivity of output \(k \) and is a function of land used in production \(a \) only

each farmer receives a fixed per-ha amount \(g \) and pays a rent \(r \) for each ha of land used
Assuming that production is related to land by a CD, the FOC for land quantity is

\[r = \sum_{k=1}^{K} \beta_k \alpha_k Y_k + \gamma g \]

where

- \(\alpha_k = a_k / \sum a_k \)
- \(Y_k = p_k \)
- \(\beta \) and \(\gamma \) are parameters to be estimated
- \(k \): crop (including cereals, proteins, potatoes, sugar beet, oil-seed and industrial crops), energy crops, vegetables and flowers, fruits, wines and grapes, olives, forage crops and other crops
The empirical model

The following equation is then estimated

\[r_{st} = d_s + \sum_k \beta_k X_{k,st} + \gamma_1 SPS_{st} + \gamma_2 ECP_{st} + Z_{st}' \delta + \varepsilon_{st} \]

where

- \(X \) is the productivity of output in a region weighted by the coefficient of output specialization
- \(SPS \) is the per ha amount of agricultural payment received under the single payment scheme
- \(ECP \) is the per ha amount received for energy crop
- \(Z \) includes control such
 - Average size of farms
 - Average share of family-to-total labour
 - Average amount of capital (B + ME) per ha
 - Density of animals (nitrate directive)
 - Proportion of rented to total land in the region (propensity to rent)
Introducing spatial relations

- Consider the linear model described before in compact form

\[r = Q' \theta + \varepsilon \]

- Consistency of the OLS estimator is threatened by the possibility that errors are not independently distributed but, on the opposite, are related among neighbouring regions
 - Omitted variables with a specific territorial effect
 - Farmland price transmission across neighbours
 - Unobserved spatial heterogeneity in the sample

- Space is accounted for by introducing a standard contiguity matrix

\[
 w_{ij} = \begin{cases}
 \frac{d_{ij}^{-1}}{\sum_j d_{ij}^{-1}} & \text{if } d_{ij} < d^* \\
 0 & \text{otherwise}
\end{cases}
\]
Model specification

- Space in the dependent variable (price contagion)
 \[r = \rho Wr + Q' \theta + \varepsilon \]

- Space in the error term (unobserved spatial heterogeneity and omitted spatial variables)
 \[r = Q' \theta + \varepsilon \]
 \[\varepsilon = \lambda W \varepsilon + u \]

- Space in the dependent variable and covariates
 \[r = \rho Wr + \theta Q + \varphi WQ + u \]

- It can be shown that both [1] and [2] are nested in [3] and specification tests (LR-test) can be conducted accordingly
Data

- FADN regional (NUTS I and II) aggregates using sampling weights
- All territories in EU25, years 2005-2008

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
<th>Mean</th>
<th>SD</th>
<th>CV</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>Rent per ha</td>
<td>199.052</td>
<td>185.863</td>
<td>0.934</td>
</tr>
<tr>
<td>$Y1$</td>
<td>Output value per ha – Cereals</td>
<td>1466.269</td>
<td>1436.281</td>
<td>0.980</td>
</tr>
<tr>
<td>$Y2$</td>
<td>Output value per ha – Energy Crops</td>
<td>968.642</td>
<td>2511.057</td>
<td>2.592</td>
</tr>
<tr>
<td>$Y3$</td>
<td>Output value per ha – Vegetables and Flowers</td>
<td>34096.5</td>
<td>66345.69</td>
<td>1.946</td>
</tr>
<tr>
<td>$Y4$</td>
<td>Output value per ha – Fruits</td>
<td>7375.31</td>
<td>7309.231</td>
<td>0.991</td>
</tr>
<tr>
<td>$Y5$</td>
<td>Output value per ha – Wines and Grapes</td>
<td>10177.35</td>
<td>15064.98</td>
<td>1.480</td>
</tr>
<tr>
<td>$Y6$</td>
<td>Output value per ha – Olives</td>
<td>2483.117</td>
<td>2235.006</td>
<td>0.900</td>
</tr>
<tr>
<td>$Y7$</td>
<td>Output value per ha – Forage Crops</td>
<td>186.52</td>
<td>269.33</td>
<td>1.444</td>
</tr>
<tr>
<td>$Y8$</td>
<td>Output per ha – Other Crops</td>
<td>81805.05</td>
<td>697388.2</td>
<td>8.525</td>
</tr>
<tr>
<td>SAP</td>
<td>Payment per ha under either SAPS or SPS</td>
<td>482.77</td>
<td>1885.702</td>
<td>3.906</td>
</tr>
<tr>
<td>ECP</td>
<td>Payment per ha for Energy Crop</td>
<td>75.167</td>
<td>678.804</td>
<td>9.031</td>
</tr>
<tr>
<td>A</td>
<td>Average farm size (in ha)</td>
<td>81.926</td>
<td>116.214</td>
<td>1.419</td>
</tr>
<tr>
<td>$FamLab$</td>
<td>Share of family to total labour</td>
<td>0.725</td>
<td>0.229</td>
<td>0.316</td>
</tr>
<tr>
<td>$FixAss$</td>
<td>Value of Fixed Assets (Machinery and Equipment) per ha</td>
<td>3381.808</td>
<td>4048.983</td>
<td>1.197</td>
</tr>
<tr>
<td>$AnimalID$</td>
<td>Number of animal units (in livestock equivalent) per ha</td>
<td>1.031</td>
<td>1.188</td>
<td>1.152</td>
</tr>
<tr>
<td>$RentProp$</td>
<td>Ratio between rented and total UAA</td>
<td>0.541</td>
<td>0.241</td>
<td>0.445</td>
</tr>
</tbody>
</table>
Results

Veg and Flowers contribute to higher regional prices to the largest extent

It is estimated that 20% of the additional payment gets capitalized into farmland rents in Europe

More than 90% of regional variation is explained

<table>
<thead>
<tr>
<th></th>
<th>FE</th>
<th>[1]</th>
<th>[2]</th>
<th>[3]</th>
</tr>
</thead>
<tbody>
<tr>
<td>X-Cereals</td>
<td>-0.097* (0.046)</td>
<td>-0.106*** (0.038)</td>
<td>-0.146*** (0.042)</td>
<td>-0.164*** (0.039)</td>
</tr>
<tr>
<td>X-Energy Crops</td>
<td>-0.010 (0.013)</td>
<td>-0.010 (0.010)</td>
<td>-0.011 (0.011)</td>
<td>-0.016 (0.011)</td>
</tr>
<tr>
<td>X-Veg and Flow</td>
<td>0.049* (0.029)</td>
<td>0.049** (0.023)</td>
<td>0.045** (0.023)</td>
<td>0.035 (0.023)</td>
</tr>
<tr>
<td>X-Fruits</td>
<td>-0.022 (0.020)</td>
<td>-0.022 (0.016)</td>
<td>-0.022 (0.015)</td>
<td>-0.034** (0.016)</td>
</tr>
<tr>
<td>X-Wines Grapes</td>
<td>-0.033 (0.030)</td>
<td>-0.034 (0.024)</td>
<td>-0.040* (0.024)</td>
<td>-0.047** (0.024)</td>
</tr>
<tr>
<td>X-Olives</td>
<td>-0.046 (0.051)</td>
<td>-0.047 (0.041)</td>
<td>-0.045 (0.041)</td>
<td>-0.024 (0.041)</td>
</tr>
<tr>
<td>X-Forage</td>
<td>-0.009 (0.019)</td>
<td>-0.011 (0.016)</td>
<td>-0.019 (0.016)</td>
<td>-0.031** (0.016)</td>
</tr>
<tr>
<td>X-Other Crops</td>
<td>-0.039* (0.021)</td>
<td>-0.039** (0.016)</td>
<td>-0.042** (0.016)</td>
<td>-0.046*** (0.016)</td>
</tr>
<tr>
<td>SAP</td>
<td>0.225*** (0.030)</td>
<td>0.224*** (0.024)</td>
<td>0.224*** (0.025)</td>
<td>0.229*** (0.024)</td>
</tr>
<tr>
<td>ECP</td>
<td>0.002 (0.010)</td>
<td>0.001 (0.008)</td>
<td>-0.002 (0.008)</td>
<td>-0.002 (0.008)</td>
</tr>
<tr>
<td>Asize</td>
<td>-0.580*** (0.185)</td>
<td>-0.594*** (0.149)</td>
<td>-0.665*** (0.150)</td>
<td>-0.703*** (0.149)</td>
</tr>
<tr>
<td>FamLab</td>
<td>-0.442* (0.232)</td>
<td>-0.448** (0.185)</td>
<td>-0.469** (0.185)</td>
<td>-0.525*** (0.182)</td>
</tr>
<tr>
<td>FixAss</td>
<td>0.053 (0.097)</td>
<td>0.041 (0.078)</td>
<td>-0.007 (0.081)</td>
<td>-0.018 (0.079)</td>
</tr>
<tr>
<td>AnimalID</td>
<td>-0.116 (0.083)</td>
<td>-0.114* (0.066)</td>
<td>-0.106* (0.066)</td>
<td>-0.123* (0.065)</td>
</tr>
<tr>
<td>RentProp</td>
<td>-1.140** (0.481)</td>
<td>-1.170*** (0.386)</td>
<td>-1.297*** (0.385)</td>
<td>-1.400*** (0.395)</td>
</tr>
</tbody>
</table>
EU flat rate
Min 90% and objective criteria
Conclusion

• Evidence suggests that EU decoupled payments are capitalized into farmland rents, supporting previous literature using territorial data.

• This overall result may potentially mask spatial heterogeneity in the degree of capitalization (EU15-EU10) not accounted for in this model.

• The introduction of a flat rate rebalances substantially the distribution of payments across MS and across regions within each MS, causing farmland prices to increase.

The research was developed as part of the 7th FP-financed FADNTOOL project (Grant 265616/FP7-KBBE-2010-4)