

Development of new methodologies and\or tools for measurement of sustainability in rural areas

Parthena Chatzinikolaou

Scuola Estiva per i Dottori e Dottorandi di Ricerca "Metodologia della ricerca nelle scienze sociali e in economia agraria" Piacenza, 4-5 Giugno 2013

Objective - Topics to be addressed

- The project will provide a background to the measurement of sustainability in rural areas:
 - Literature review on the concept dimensions of Sustainable Development (SD)
 - Research on existing methods and analytical frameworks that try to assess the progress towards SD.
 - Review on existing methodologies according to tools
 - Development of a framework for evaluating existing indicators
 - Define and select the "best needed" SDI/ extension\combination

 Contribute at regional and national level to develop and apply Sustainable Development Indicators (SDI)

Sustainable Development

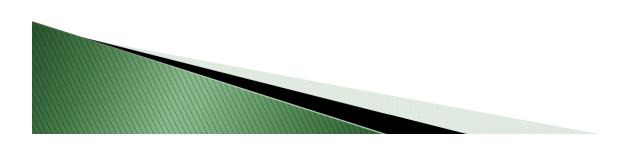

• The concept of SD is an approach to development that looks to **balance** different, and often competing, **needs** against an awareness of the environmental, social and economic limitations we face as a society.

"SD is development that meets the needs of the present without compromising the ability of future generations to meet their own needs. It contains within it two key concepts:

- the essential needs of the world's poor, to which overriding priority should be given;
- the idea of limitations imposed by the state of technology and social organization on the environment's ability to meet present and future needs.
- Proponents of SD differ in their emphases on what is to be sustained, what is to be developed, how to link environment and development, and for how long.

Monitoring Sustainable Development

- Measuring progress towards SD is an integral part of the EU SDS, and it is Eurostat's task to produce a monitoring report every two years.
- In order to contribute to these progress reports, Eurostat has developed a set of Sustainable Development Indicators (SDI).
- All these reports chart progress in the implementation of the strategy's objectives and key challenges.
- SD still remains a fundamental objective of the European Union. The strategy will continue to provide a long-term vision and constitute the policy framework for policies and strategies.



Review of methodologies and tools which seek to deliver sustainable areas

Classification of Studies

- Sixteen studies have been reviewed, analyzed and classified, according to their objective and tools.
- Only methods that were sufficiently different from each other, well documented and showing proof have been used.
- The aim of this classification is to point out in what ways, and to what extend the three dimensions of SD are incorporated and to examine if they are equally prioritized.

Classification of the studies according to their objectives

Objective of the Studies	Number of Studies	Percentage
Focus only on environmental sustainability, or assessing environmental impacts	7	43.75%
Attempts to assess or measure all three dimensions of sustainability (economic, environmental, social)	6	37.50%
Different approaches to measure or assess sustainability. (Consistency between socio-economic indicators and climate change, assessment of ecological and economic sustainability or economic valuation of sustainability indicators.	3	18.75%
Total	16	100%

Classification of the studies according to the methodologies and tools

Environmental, Economic and Social Sustainability			
Author	Objective	Methodologies and Tools	
Paracchini et. al. 2011	integrated economic, environmental and social issues across a variety of sectors	operational multi-scale framework, which comprises the assessment in the three dimensions of sustainability	
Gomez-Limon and Sanchez-Fernandez 2010	evaluated the three dimensions sustainability of farms by means of composite indicators	16 indicators that cover the three components of the sustainability concept	
Zahm et. al. 2008	designed a self-assessment tool based on the IDEA method to support sustainable agriculture	41 indicators covering the three dimensions of sustainability	
Van Cauwenbergh et. al. 2007	proposed a framework for sustainability assessment of agricultural systems, encompassed the three dimensions of sustainability	the framework is composed of principles, criteria, indicators and reference values in a structured way	
Rasul and Thapa 2004	examined the sustainability in terms of environmental soundness, economic viability and social acceptability	12 indicators covering the three dimensions of sustainability	
Glaser and Diele 2004	presented some central aspects for the assessment of the three dimensions of sustainability	criteria from biology, economics and sociology	

Environmental Sustainability			
Author	Objective	Methodologies and Tools	
Halberg et. al. 2005	selected ten input-output IOA systems as effective tools for Agri-environmental improvement	environmental indicators based on good agricultural practices (GAP)	
Lundin and Morrison 2002	presented a procedure which measures environmental sustainability of urban water system, based on LCA methodology	indicators, which best reflect environmental sustainability	
Girardin et. al 2000	adopted an interaction matrix to evaluate the effects of farmer production practices on the agro-ecosystem.	Agro-Ecological Indicators AEI) and Indicators of Environmental Impact (IEI)	
Onate et. al. 2000	tried to evaluate the potential effects of Agri-environmental Regulation	Agri-environmental indicators (AEIs)	
Haas et al. 2000	adapted the LCA method, for assessing the environmental impact of production processes	the whole farm level, efficiently and feasibly assessing all relevant environmental impacts	
Rossing et. al. 1997	tried to measure ecological sustainability taking into account recent changes in practices in the farm	Farmer Sustainability Index (FSI), a sing value reflecting ecological sustainability	
Taylor et. al. 1993	designed a framework for environmentally friendly flower bulb production systems	1 economic, 2 environmental objectives and various socio-economic constraints	

	Additional Studies			
Author	Objective	Methodologies and Tools		
Abildtrup et. al. 2006	presented an approach for the construction of socio-economic scenarios required for the analysis of climate change impacts	scenarios that ensured internal consistency between the evolution of socio-economics and climate change		
Pannell and Glenn 2000	presented a conceptual framework for the economic valuation and prioritization of sustainability indicators	the framework was based on Bayesian decision theory calculate the value of information under conditions of uncertainty		
Biewinga and van der Bijl 1996	tried to assess ecological and economic sustainability of growing and conversion of crops to energy	environmental and additional economic indicators specific for agricultural production systems.		

Indicators for the assessment of environmental sustainability

Author	Indicators
	1. Nutrient use (Surplus N and P, Efficiency % output input
Halberg et. al. 2005	2. <u>Energy use (Direct energy, MJ or MJ, Total energy Use)</u>
	3. <u>Pesticide use</u> (Treatment frequency index, Environmental impact points)
	Land-use level
	1. Scrubs – Area of scrub
	2. Barren – land Area of barren land
	3. Grassland - Area of grassland
	4. Crops – (Arable area-Fallow area)
	5. Fallow land - Area of fallow land
	6. <u>Irrigated land</u> – Area of irrigated crops
	7. Tree plantations - Area of tree plantations
	8. Crop boundaries - Area (length) of boundaries
	9. Hedgerows Area - (length) of hedgerows
Onate et. al. 2000	10. Crops to fallow - Area converted
	11. Fallow to crops - Area converted
	12. Arable to tree plantations – Area converted
	13. Arable to abandoned - Area converted
	Management level
	1. Grain legume crops – Area of grain legume
	2. Crops diversity – No. of crops with >5% of FA or GA
	3. <u>Fertilizers use</u> Kg
	4. Sprayers use Kg
	5. Grazing stock density
	6. Date of harvest

Author	Indicators
	1. Withdrawal – Annual freshwater withdrawal/annual available volume
	2. <u>Water consumption</u> – Use per capita per day
	3. Treatment - Chemical and energy use for water supply
	4. Distribution - Leakage (unaccounted water/produced water)
	5. <u>Reuse of water</u> – Reused water
undin and	6. Production - Wastewater production per day
orrison 2002	7. Treatment -performance Removal of BOD5, P, N
	8. Loads to receiving water – Loads of BOD5, P and N
	9. Resource use – Chemical and energy use for wastewater treatment
	10. <u>Recycling</u> of nutrients - Amount of P and N recycled
	11. Quality of sludge - Cadmium content in sludge
	12. Energy recovery -Energy recovered, heating and power
	1. <u>Resource consumption</u> – Use of primary energy, Use of P– & K– fertiliser
	 Global warming potential - CO, CH,, N20-emission
	3. Soil function/strain Accumulation of heavy metals, NH~, NO x, SO2-emission
	4. <u>Water quality</u> – N-fertilising, N-farmgate-balance, potential of nitrate leaching,
	5. P-fertilising, P-balance, % of drained area
	6. Human and ecotoxicity – Application of herbicides and antibiotics, potential of nitrate leaching, NH3
laas et al. 2000	emission
	7. <u>Biodiversity</u> – Grassland (number of species, date of first cut), hedges & field margins (density, diversity,
	state, care)
	8. Landscape image Grassland, hedges & field margins, grazing animals (period, breed, alpine cattle keepin
	layout of farmstead (regional type, buildings)
	9. Animal husbandry – Housing system & conditions, herd management (e.g. lightness, spacing, grazing
	5. Animal husbandry housing system & conditions, nerd management (e.g. nghtness, spacing, grazing

Indicators for the assessment of the 3 dimensions of sustainability

A u dh a u	Indicators			
Author	Economic	Environmental	Social	
Author Paracchini et. al. 2011 Zahm et. al. 2008	Economic 1. Residential Ind. Services 2. Land based Production 3. Infrastructure 1. Available income per worker compared with the national legal minimum wage 2. Economic specialization rate 3. Financial autonomy 4. Reliance on direct subsidies from CAP and indirect economic impact of milk and sugar quotas 5. Total assets minus lands value by non salaried worker unit	Environmental4. Abiotic Resources5. Provision Habitat6. Ecosystem Processes7. Diversity of annual or temporary crops8. Diversity of perennial crops9. Diversity of associated vegetation10. Animal diversity11. Enhancement and conservation of genetic heritage12. Cropping patterns13. Dimension of fields14. Organic matter management15. Ecological buffer zones	Social7. Work8. Health & Recreation9. Culture9. Culture26. Quality of foodstuffs produced 27. Enhancement of buildings and landscape heritage28. Processing of non-organic waste29. Accessibility of space30. Social involvement 31. Services, multi-activities32. Contribution to employment33. Collective work34. Organisation of space35. Probable farm sustainability 	
6. Op	6. Operating expenses as a proportion of total production value	 19. Fertilization 20. Effluent processing 21. Pesticides and veterinary products 22. <u>Animal well-being</u> 23. Soil resource protection 24. Water resource protection 25. Energy dependence 	 37. Training 38. Labour intensity 39. <u>Quality of life</u> 40. Isolation 41. <u>Reception, hygiene and safety</u> 	

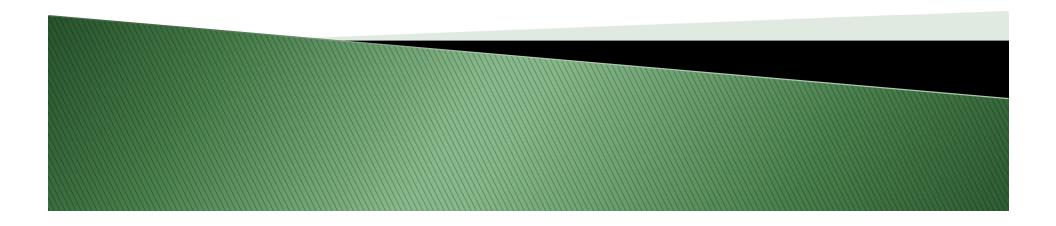
A such a su		Indicators	
Author	Economic	Environmental	Social
Gomez-Limon and Sanchez-Fernandez 2010	 Income of agricultural producers Contribution of agriculture to GDP Insured area 	 Economic dependence on agricultural activity Specialization Mean area per plot Soil cover Nitrogen balance Phosphorus balance Pesticide risk Use of irrigation water Energy balance Agro-environmental subsidy areas 	 14. <u>Agricultural employment</u> 15. Stability of work-force 16. <u>Risk of abandonment of agricultural</u> <u>activity</u>
Van Cauwenbergh et. al. 2007	 Farm income Dependency on direct and indirect subsidies Dependency on external finance Agricultural activities Market activities Farmer's professional training Inter-generational continuation of farming activity Land tenure arrangements Adaptability of the farm 	 10. Supply (flow) of quality air function 11. Supply (stock) of soil function 12. Supply (flow) of water function 13. Water flow buffering function 14. Supply (flow) of energy function 15. Supply (stock) of biotic resources 16. Supply (stock) of habitat function 17. Biotic resource flow buffering function 	 18. Food security and safety 19. Physical <u>well-being of the farming community function</u> 20. Psychological well-being of the farming community function 21. <u>Well-being of the society</u>
Rasul and Thapa 2004	 Land productivity Yield stability and profitability 	 Land-use pattern Cropping pattern Soil fertility management, Pest and disease management Soil fertility status 	 8. Input self-sufficiency 9. Equity 10. Food security 11. Risks and uncertainties involved in crop cultivation

Remarks

- The different dimensions of SD have not been equally prioritized.
- The division of indicators emphasizes the multi-dimensional nature of SD and reflects the importance of integrating its dimensions.
- Measurement of sustainability needs a set of multidimensional indicators.
- A conceptual approach is still missing from the literature. There is a plethora of objectives, strategies, measurements but with little regard for the equal selection of indicators.

Next Steps

- 1. Development of a hierarchical **framework** based on different themes, according to the policy priorities of the SDS
- 2. **Define criteria** for the selection of the best-needed SDI in each theme:
 - Data availability and reliability
 - Suitability of the data


- Interlinkage relationships between the dimensions
- 3. Define a comparative basis for better understanding of drivers and goals of each practice
- 4. **Development a set of SDI** (new/extension/combination), for making operational the measurement of sustainability.
- 5. Contribute to the research towards a sustainable knowledge society through the development of a framework of Sustainable Development Indicators.

Methodology

- Multivariate analysis, (grouping and classification) of methodologies and tools, to point out in what ways, and to what extend the three dimensions are incorporated within SD
- Multicriteria analysis based on Multicriteria Decision Making in order to evaluate the existing tools – selection of appropriate indicators – simulation of the most realistic decision process such as optimum set of SDI.

Thank you

