Collective targeting in rural policies: review of proposed mechanisms and assessment of irrigation infrastructure measures in Emilia- Romagna

Zavalloni M. ${ }^{1}$, Raggi M. ${ }^{2}$ and Viaggi D. ${ }^{1}$
${ }^{1}$ University of Bologna, Department of Agricultural Sciences, Bologna, Italy ${ }^{2}$ University of Bologna, Department of Statistical Sciences, Bologna, Italy
matteo.zavalloni3@unibo.it

Introduction

- Topic:
- Rural policies on natural resource management
- Proper target: group of farmers (vs individual farmers)
- Public good
- Incentives for coordinated environmental efforts
- Payment for environmental practices
- Premium/bonus "if" coordination
- Minimum participation rules
- Minimum number of agents
- Minimum extent of land contracted

Introduction

- Objective:

1. Review of policy and literature
2. Potential of Cooperative Game Theory (CGT):

- Focus on minimum participation rules in rural policy (natural resource management)
- Effect of threshold on benefits distribution
- Cooperative Game Theory
- Communication - Binding agreement - superadditivity: pareto efficiency is no problem
- Focus on the distribution of the benefits
- Shapley Value (SV): attributes the value of a cooperative venture
- Application to Emilia-Romagna
- Rural Development Plan measure 125

Background: policy

- EU (Biodiversity):
- Collective implementation of the "greening" constraints
- Group of farmers as recipients of agri-environmentclimate payments
- Emilia-Romagna (water quantity) incentivizes collective reservoirs
- Two sets of eligibility constrains for the potential projects: one on the minimum size of the reservoirs (greater than $50000 \mathrm{~m}^{3}$), one on the minimum number of farmers participating (20)
- Emilia-Romagna (Biodiversity):
- "environmental contracts"
- France (water quality):
- Payments for buffer strips are increased by 20% if at least 60\% or the river bank is is not cultivated (Dupraz et al., 2009)

Background: literature

- Biodiversity: agglomeration bonus/payment (Parkhurst et al. 2002)
- Little on bargaining issues
- Little on on the distribution of the benefits
- Mostly based on Non Cooperative game theory
- Irrigation water (quantity) (Ostrom, 1990)
- Little on relationship between policy / socio-ecological systems
- Benefit distribution (Janssen et al., 2011)

Background: literature

- Biodiversity: agglomeration bonus/payment
- Experiments:
- Communication (Parkhurst et al. 2002)
- Network size (Banerjee et al. 2012)
- Information availability (Banerjee et al. 2014)
- Mathematical programming model
- Policy effectiveness (Albers et al., 2008; Dupraz et al., 2009)
- Global optimization objective function (Bamière et al., 2013; Drechsler et al., 2010),
- Side-payments (Wätzold and Drechsler, 2013)
- Irrigation water (quantity)
- Lack of a central coordination (Ostrom, 1990)

Cooperative Game Theory

- Coalitions
- Characteristic function
- Solutions

Cooperative Game Theory

- Coalitions: groupings of players
- Modelling
- Minimum participation rules
- Spatial relations

- grand-coalition: when all the players work together
- coalitions: possible sub-groups

Cooperative Game Theory

- Characteristic function
- Attributes a value to the coalitions
- Policy incentives
- Super-additivity $v(N) \geq v(s)+v(t)$

	$q^{\mathrm{t}}=0$
$\mathrm{p}(\mathrm{A})$	$\mathbf{5 8 9 9}$
$\mathrm{v}(\mathrm{B})$	$\mathbf{1 3 3 3 4}$
$\mathrm{v}(\mathrm{C})$	$\mathbf{3 8 0 8 0}$
$\mathrm{v}(\mathrm{A}, \mathrm{B})$	19566
$\mathrm{v}(\mathrm{A}, \mathrm{C})$	$\mathbf{4 4 3 8 3}$
$\mathrm{v}(\mathrm{B}, \mathrm{C})$	$\mathbf{5 2 0 1 0}$
$\mathrm{v}(\mathrm{A}, \mathrm{B}, \mathrm{C})$	$\mathbf{5 8 3 3 5}$

	Super-additivity
$v(A, B)+v(C)$	57646
$v(A, C)+v(B)$	57718
$v(B, C)+v(A)$	57909
$v(A)+v(B)+v(C)$	57313

Cooperative Game Theory

- Solution: distribution of the worth
- u_{i}^{*} : worth attributed to the $i^{\text {th }}$ agent in the grandcoalition

Solution: core

The "core": rationally acceptable grand-coalition worth allocation (Gillies, 1959):

Individual rationality

$$
u_{i}^{*} \geq v(\{i\}) \forall i \in N
$$

Group rationality

$$
\sum_{i \in S} u_{i}^{*} \geq v(s) \forall s \in S
$$

Efficiency:

$$
\sum_{i \in S} u_{i}^{*}=v(N)
$$

Solution: Shapley Value

- The Shapley Value:
- unique solution
- surely in the core if convex game (Shapley, 1971, 1952):

$$
u_{i}^{*}=u_{i}^{s v}=\sum_{\substack{s \subseteq N \\ i \in S}} \frac{(n-|s|)!(|s|-1)!}{n!}[v(s)-v(s-\{i\})]
$$

The worth attributed to the $i^{\text {th }}$ player through the SV is given by its average marginal contribution for any possible grouping of the players.

Solution: Shapley Value

- The Shapley Value:
- unique solution
- surely in the core if convex game (Shapley, 1971, 1952):

$$
u_{i}^{*}=u_{i}^{s v}=\sum_{\substack{s \leq N \\ i \in S}} \frac{(n-|s|)!(|s|-1)!}{n!}[v(s)-v(s-\{i\})]
$$

The worth attributed to the $i^{\text {th }}$ player through the SV is given by its average marginal contribution for any possible grouping of the players.

Characteristic function

Problem:

- N farms have to build a irrigation reservoir
- Pooling resources to build the reservoir
- Financial support of the RDP - minimum participation rules

Characteristic function

- The value for any possible coalition is given by:

$$
\begin{aligned}
& \max \left[R-(1-\alpha P) k\left(Q_{s}\right)\right] \\
& \text { Revenues: } R=\sum_{i \in s} f^{i}\left(Q_{i}\right)
\end{aligned}
$$

Costs:

$$
k\left(Q_{s}\right)
$$

Policy participation: $\left\{\begin{array}{l}P=1 \text { if } Q_{s} \geq q^{t} \\ P=0 \text { if } Q_{s}<q^{t}\end{array}\right.$
Assume $k\left(Q_{s}\right)$ exhibits economies of scale $\left(k^{\prime}\left(Q_{s}\right)>0\right.$ and $k^{\prime \prime}\left(Q_{s}\right)<$ 0) -> grand-coalition is the most efficient group arrangement

Theoretical analysis

- Solutions
- With financial support

$$
f_{Q_{i}}^{i}=f_{Q_{j}}^{j}=\alpha k_{Q_{s}}
$$

- Without financial support

$$
f_{Q_{i}}^{i}=f_{Q_{j}}^{j}=k_{Q_{s}}
$$

- $\mathrm{Q}_{\mathrm{s}}{ }^{*}$.P: water quantity of coalition financially supported by the policy if no threshold

$$
\nu(s)=\left\{\begin{array}{l}
\Pi_{s}^{p} \text { with } Q_{s}^{*}=Q_{s}^{* p} \text { if } Q_{s}^{* p} \geq q^{\prime} \\
\Pi_{s}^{p, t} \text { with } Q_{s}^{*}=q^{\prime} \text { if } Q_{s}^{* p}<q^{\prime} \text { and } \Pi_{s}^{p, t} \geq \Pi_{s}^{N P} \\
\Pi_{s}^{N P} \text { with } Q_{s}^{*}=Q_{s}^{N P} \text { if } Q_{s}^{* p}<q^{\prime} \text { and } \Pi_{s}^{p, t}<\Pi_{s}^{N P}
\end{array}\right.
$$

- Increasing the threshold make the financial support more and more costly up to the point where the coalition withdraw from the policy

Theoretical analysis

Data and Scenarios

- Application to the Emilia-Romagna RDP
- Secondary data for revenue functions (Zavalloni et al 2014)
- 3 farms (different characteristics)
- Construction costs formulated with Consorzio Bonifica Romagna Occidentale
- Scenarios:
- "Size-rule": a range of q^{t}
- " n -rule": the minimum number of agents required to have access to the RDP ($n \geq 1, n \geq 2, n \geq 3$)
- share of the cost covered by the RDP ($\alpha=30 \%, \alpha=50 \%, \alpha=70 \%$)

Results - Characteristic function

- Increasing the threshold makes more and more difficult to obtain the financial support (bold numbers)
- Grand-coalition is more and more attractive (brackets)

	$\mathrm{q}^{\mathrm{t}}=0$	$\mathrm{q}^{\mathrm{t}}=40000$	$\mathrm{q}^{\mathrm{t}}=80000$
v (A)	5899	4572	4572
v(B)	13334	11254	11254
v(C)	38080	38080	33921
$v(A, B)$	19566 (2\%)	16946 (7\%)	16773 (7\%)
v(A,C)	44383 (1\%)	44383 (4\%)	40778 (6\%)
$\mathrm{v}(\mathrm{B}, \mathrm{C})$	52010 (1\%)	52010 (5\%)	50735 (12\%)
v(A,B,C)	58335 (1\%)	58335 (6\%)	57781 (11\%)

Results - n-Rule

- Shapley value (\%)
- 3 farms
- Share of financial support: 70\%

$$
\cdots n \geq 1
$$

$$
-n \geq 2
$$

$$
\wedge \quad n \geq 3
$$

Results - size rule

Shapley value (\%)

- Different minimum participation threshold (size of reservoir)
- 3 farms
- Share of financial support: 70\%

Farm B: $\cong 22 \%$

- $-\alpha=70 \%$

Farm C: $\cong 67 \%$

Results - size rule

Shapley value (\%)

- Farm C
- Different minimum participation threshold (size of reservoir)
- Share of financial support: 70\%

Discussion

- Different solutions:
- Shapley Value
- Nash / Nash-Harsanyi
- Nucleolus
- Limitations:
- No public good:
- SV assumes that the worth of a given coalition is not affected by the players outside the coalition
- Further development to address this issue (Macho-Stadler et al., 2007)
- Difficult to scale up

Conclusions

- Increasing interest from policy makers
- Literature not yet comprehensive
- Cooperative game theory worth further exploring
- Conditionality rules are not neutral on benefit distributions - to take into account in policy formulation
- Distribution matters in collective actions (Janssen et al 2011)
- Coalition formation theory

Thanks!

matteo.zavalloni3@unibo.it

Results - Characteristic function

	$\mathrm{q}^{\mathrm{t}}=0$	$\mathrm{q}^{\mathrm{t}}=40000$	$\mathrm{q}^{\mathrm{t}}=80000$
v (A)	5899*	4572	4572
v(B)	13334*	11254	11254
v (C)	38080*	38080*	33921
$v(A, B)$	19566* (2\%)	16946* (7\%)	16773 (7\%)
$v(A, C)$	44383* (1\%)	44383* (4\%)	40778* (6\%)
$\mathrm{v}(\mathrm{B}, \mathrm{C})$	52010* (1\%)	52010* (5\%)	50735* (12\%)
$v(A, B, C)$	58335* (1\%)	58335* (6\%)	57781* (11\%)

Check super-additivity:

$v(A, B)+v(C)$	57646	55026	50695
$v(A, C)+v(B)$	57718	55637	52032
$v(B, C)+v(A)$	57909	56583	55308
$v(A)+v(B)+$ $v(C)$	57313	53906	49747

Results - size rule

Shapley Value (\%)

- Different minimum participation threshold (size of reservoir)
- 3 farms
- 3 different share of financial support

$\rightarrow-\alpha=70 \%-\alpha=50 \% \sim_{\alpha=30 \%}$ farm C

Discussion

- Increasing minimum participation threshold:
- Increase attractiveness of cooperation
- Asymmetric effect
- Threshold on reservoir size: tend to empower bigger farms (up to a given level)
- Threshold on number of participants: tend to empower smaller farms
- Extension/application to agglomeration incentives
- Agglomeration payments vs agglomeration bonus
- Cooperative game theory can address:
- Spatial element
- Social interactions

