

4th AIEAA Conference "Innovation, productivity and growth: towards sustainable agri-food production" 11-12 June, 2015 Ancona, Italy

Collective targeting in rural policies: review of proposed mechanisms and assessment of irrigation infrastructure measures in Emilia- Romagna

Zavalloni M.¹, Raggi M.² and Viaggi D.¹

¹University of Bologna, Department of Agricultural Sciences, Bologna, Italy ²University of Bologna, Department of Statistical Sciences, Bologna, Italy

matteo.zavalloni3@unibo.it

Introduction

- Topic:
 - Rural policies on natural resource management
 - Proper target: group of farmers (vs individual farmers)
 - Public good
 - Incentives for coordinated environmental efforts
 - Payment for environmental practices
 - Premium/bonus "if" coordination
 - Minimum participation rules
 - Minimum number of agents
 - Minimum extent of land contracted

Introduction

- Objective:
 - 1. Review of policy and literature
 - 2. Potential of Cooperative Game Theory (CGT):
 - Focus on minimum participation rules in rural policy (natural resource management)
 - Effect of threshold on benefits distribution
- Cooperative Game Theory
 - Communication Binding agreement superadditivity: pareto efficiency is no problem
 - Focus on the distribution of the benefits
 - Shapley Value (SV): attributes the value of a cooperative venture
- Application to Emilia-Romagna
 - Rural Development Plan measure 125

Background: policy

- EU (Biodiversity):
 - Collective implementation of the "greening" constraints
 - Group of farmers as recipients of agri-environmentclimate payments
- Emilia-Romagna (water quantity) incentivizes collective reservoirs
 - Two sets of eligibility constrains for the potential projects: one on the minimum size of the reservoirs (greater than 50000 m³), one on the minimum number of farmers participating (20)
- Emilia-Romagna (Biodiversity):
 - "environmental contracts"
- France (water quality):
 - Payments for buffer strips are increased by 20% if at least 60% or the river bank is is not cultivated (Dupraz et al., 2009)

Background: literature

- Biodiversity: agglomeration bonus/payment (Parkhurst et al. 2002)
 - Little on bargaining issues
 - Little on on the distribution of the benefits
 - Mostly based on Non Cooperative game theory
- Irrigation water (quantity) (Ostrom, 1990)
 - Little on relationship between policy / socio-ecological systems
 - Benefit distribution (Janssen et al., 2011)

Background: literature

- Biodiversity: agglomeration bonus/payment
 - Experiments:
 - Communication (Parkhurst et al. 2002)
 - Network size (Banerjee et al. 2012)
 - Information availability (Banerjee et al. 2014)
 - Mathematical programming model
 - Policy effectiveness (Albers et al., 2008; Dupraz et al., 2009)
 - Global optimization objective function (Bamière et al., 2013; Drechsler et al., 2010),
 - Side-payments (Wätzold and Drechsler, 2013)
- Irrigation water (quantity)
 - Lack of a central coordination (Ostrom, 1990)

- Coalitions
- Characteristic function
- Solutions

- Coalitions: groupings of players
 - Modelling
 - Minimum participation rules
 - Spatial relations
 - Social relations

- grand-coalition: when all the players work together
- coalitions: possible sub-groups

- Characteristic function
 - Attributes a value to the coalitions
 - Policy incentives
 - Super-additivity $v(N) \ge v(s) + v(t)$

	q ^t = 0		
v(A)	5899		
v(B)	13334		Super-additivity
v(C)	38080		
v(A,B)	19566	v(A,B)+ v((C) 57646
v(A,C)	44383	v(A,C)+ v	(B) 57718
		v(B,C) + v	(A) 57909
v(B,C)	52010	v(A)+ v(B)+	
v(A,B,C)	58335	V(/ () · V(D) ·	

- Solution: distribution of the worth
 - u_i^* : worth attributed to the *i*th agent in the grand-coalition

Solution: core

The "core": rationally acceptable grand-coalition worth allocation (Gillies, 1959):

Individual rationality

$$u_i^* \ge v\left(\left\{i\right\}\right) \; \forall i \in N$$

Group rationality

$$\sum_{i \in S} u_i^* \ge \nu(s) \ \forall s \in S$$

Efficiency:

$$\sum_{i\in\mathcal{S}}u_i^*=\nu(N)$$

Solution: Shapley Value

- The Shapley Value:
 - unique solution
 - surely in the core if convex game (Shapley, 1971, 1952):

$$u_{i}^{*} = u_{i}^{sv} = \sum_{\substack{s \subseteq N \\ i \in S}} \frac{\left(n - |s|\right)! \left(|s| - 1\right)!}{n!} \left[v(s) - v(s - \{i\})\right]$$

The worth attributed to the *i*th player through the SV is given by its average marginal contribution for any possible grouping of the players.

Solution: Shapley Value

- The Shapley Value:
 - unique solution
 - surely in the core if convex game (Shapley, 1971, 1952):

$$u_i^* = u_i^{sv} = \sum_{\substack{s \subseteq N \\ i \in S}} \frac{\left(n - |s|\right)! \left(|s| - 1\right)!}{n!} \left[v\left(s\right) - v\left(s - \{i\}\right) \right]$$

The worth attributed to the *i*th player through the SV is given by its average marginal contribution for any possible grouping of the players.

Characteristic function

Problem:

- N farms have to build a irrigation reservoir
- Pooling resources to build the reservoir
- Financial support of the RDP minimum participation rules

Characteristic function

• The value for any possible coalition is given by:

$$\max \begin{bmatrix} R - (1 - \alpha P) k(Q_s) \end{bmatrix}$$

Revenues: $R = \sum_{i \in s} f^i(Q_i)$
Costs: $k(Q_s)$
Policy participation:
$$\begin{cases} P = 1 \text{ if } Q_s \ge q^i \\ P = 0 \text{ if } Q_s < q^i \end{cases}$$

Assume $k(Q_s)$ exhibits economies of scale $(k'(Q_s) > 0 \text{ and } k''(Q_s) < 0$) -> grand-coalition is the most efficient group arrangement

- Solutions
 - With financial support

$$f_{\mathcal{Q}_i}^i = f_{\mathcal{Q}_j}^j = \alpha k_{\mathcal{Q}_s}$$

- Without financial support $f_{\mathcal{Q}_{i}}^{i} = f_{\mathcal{Q}_{j}}^{j} = k_{\mathcal{Q}_{s}}$
- Q_s^{*,P}: water quantity of coalition financially supported by the policy if no threshold

$$\nu(s) = \begin{cases} \Pi_s^{P} \text{ with } \mathcal{Q}_s^* = \mathcal{Q}_s^{*P} \text{ if } \mathcal{Q}_s^{*P} \ge q^t \\ \Pi_s^{P,t} \text{ with } \mathcal{Q}_s^* = q^t \text{ if } \mathcal{Q}_s^{*P} < q^t \text{ and } \Pi_s^{P,t} \ge \Pi_s^{NP} \\ \Pi_s^{NP} \text{ with } \mathcal{Q}_s^* = \mathcal{Q}_s^{NP} \text{ if } \mathcal{Q}_s^{*P} < q^t \text{ and } \Pi_s^{P,t} < \Pi_s^{NP} \end{cases}$$

 Increasing the threshold make the financial support more and more costly up to the point where the coalition withdraw from the policy

Data and Scenarios

- Application to the Emilia-Romagna RDP
- Secondary data for revenue functions (Zavalloni et al 2014)
 - 3 farms (different characteristics)
- Construction costs formulated with Consorzio Bonifica Romagna Occidentale
- Scenarios:
 - "Size-rule": a range of q^t
 - "n-rule": the minimum number of agents required to have access to the RDP (*n*≥1, *n*≥2, *n*≥3)
 - share of the cost covered by the RDP (α =30%, α =50%, α =70%)

Results – Characteristic function

- Increasing the threshold makes more and more difficult to obtain the financial support (bold numbers)
- Grand-coalition is more and more attractive (brackets)

	q ^t = 0	q ^t = 40000	q ^t = 80000
v(A)	5899	4572	4572
v(B)	13334	11254	11254
v(C)	38080	38080	33921
v(A,B)	19566 (2%)	16946 (7%)	16773 (7%)
v(A,C)	44383 (1%)	44383 (4%)	40778 (6%)
v(B,C)	52010 (1%)	52010 (5%)	50735 (12%)
v(A,B,C)	58335 <mark>(1%)</mark>	58335 <mark>(6%)</mark>	57781 <mark>(11%)</mark>

Results – n-Rule

- Shapley value (%)
 - 3 farms
 - Share of financial support: 70%

Results – size rule

Shapley value (%)

- Different minimum participation threshold (size of reservoir)
- 3 farms
- Share of financial support: 70%

Results – size rule

Shapley value (%)

- Farm C
- Different minimum participation threshold (size of reservoir)
- Share of financial support: 70%

Discussion

- Different solutions:
 - Shapley Value
 - Nash / Nash-Harsanyi
 - Nucleolus
- Limitations:
 - No public good:
 - SV assumes that the worth of a given coalition is not affected by the players outside the coalition
 - Further development to address this issue (Macho-Stadler et al., 2007)
 - Difficult to scale up

Conclusions

- Increasing interest from policy makers
- Literature not yet comprehensive
- Cooperative game theory worth further exploring
 - Conditionality rules are not neutral on benefit distributions

 to take into account in policy formulation
 - Distribution matters in collective actions (Janssen et al 2011)
 - Coalition formation theory

Thanks!

matteo.zavalloni3@unibo.it

Results – Characteristic function

	q ^t = 0	q ^t = 40000	q ^t = 80000			
v(A)	5899*	4572	4572			
v(B)	13334*	11254	11254			
v(C)	38080*	38080*	33921			
v(A,B)	19566* (2%)	16946* (7%)	16773 (7%)			
v(A,C)	44383* (1%)	44383* (4%)	40778* (6%)			
v(B,C)	52010* (1%)	52010* (5%)	50735* (12%)			
v(A,B,C)	58335* <mark>(1%)</mark>	58335* <mark>(6%)</mark>	57781* <mark>(11%)</mark>			
Check super-additivity:						
v(A,B)+ v(C)	57646	55026	50695			
v(A,C)+ v(B)	57718	55637	52032			
v(B,C) + v(A)	57909	56583	55308			
v(A)+ v(B)+ v(C)	57313	53906	49747			

Results – size rule

Shapley Value (%)

- Different minimum participation threshold (size of reservoir)
- 3 farms
- 3 different share of financial support

- Increasing minimum participation threshold:
 - Increase attractiveness of cooperation
 - Asymmetric effect
 - Threshold on reservoir size: tend to empower bigger farms (up to a given level)
 - Threshold on number of participants: tend to empower smaller farms
- Extension/application to agglomeration incentives
 - Agglomeration payments vs agglomeration bonus
 - Cooperative game theory can address:
 - Spatial element
 - Social interactions