

Discussion on Mark Rosegrant's
"Global Perspectives on Food
Security and Environmental
Sustainability"

Donato Romano

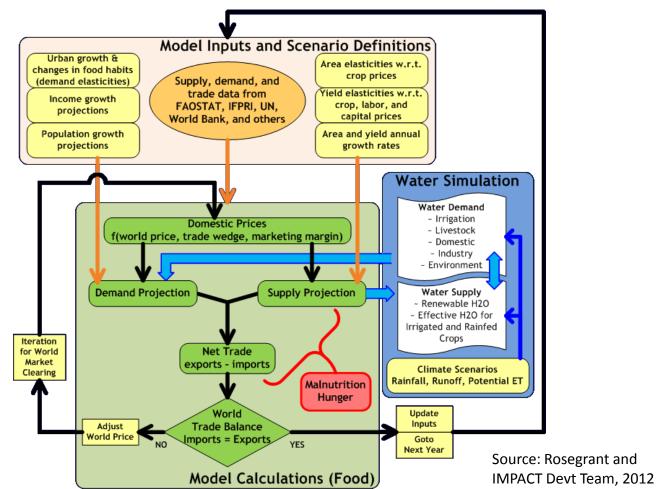
4th AIEAA Conference, Ancona: 11-12 June 2015

Innovation, productivity and growth: towards sustainable agri-food production

The starting point

IMPACT: A fascinating journey in integrated model building

- 1995: first IMPACT model, only policy and economic component (IFPRI Vision 2020)
- 2002: integration with a water model accounting for CC
- 2009: integration with a crop model accounting for CC
- 2010: major revision to reflect results from the next generation climate models
- 2014: the role of Agr R&D and adoption of innovations on long-term food security and environmental sustainability


The starting point

UNIVERSITÀ

DEGLI STUDI

FIRENZE

IMPACT: A fascinating journey in integrated model building

My discussion

- not focusing on model's projections
- focus on the rationale, hypotheses and implications
 - what is in there?
 - what is not in there?
 - what may be in there?

(basic) IMPACT: policy and trade simulations

- partial equilibrium global agricultural sector model: world market prices for all commodities that satisfy market-clearing conditions
- multi-commodity: 46 crops and livestock commodities
- multi-country: 115 countries/regions, linked to the rest of the world through trade

IWSM: water systems and water stress

- water scenarios: downscaled and calibrated to GCMs (future climates in the different IPCC SRES scenarios)
- food producing units: 281 combination of 126 water basins with 115 country/regions

Innovation, productivity and growth: towards sustainable agri-food production

What is in there?

DSSAT: process-based crop model

- crop modeling suite: simulate the responses of crops to changing biophysical conditions
- technology adoption: adoption pathways, link between IMPACT and DSSAT

Outputs

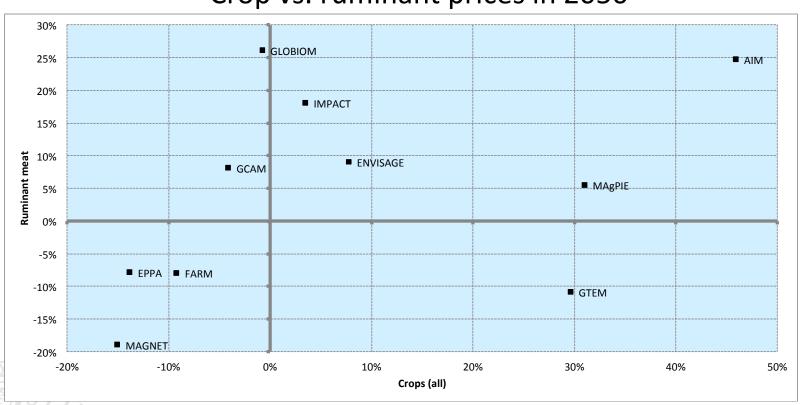
- **demand**: function of prices, income, and population growth
- crop production: determined by crop and input prices, the rate of productivity growth, and water availability
- projections: global food supply, demand, trade, and

Rationale

- rising resource scarcity (water, land) → constraints on food production growth
- increasing bioenergy demand → increased food-fuel competition for land and water
- greater food production from higher productivity rather than from a net increase in cropland area
- role of agricultural R&D activities and technology adoption

Source: von Lampe et al., 2014

Model (References)	Institution	Type	Economy coverage	Agric. sectors [†]	Regions [‡]	Agric. policies	Agric. supply	Final demand	Trade
AIM (Fujimori et al., 2012)	NIES, Japan	CGE	Full economy	8/1	89/17	Implicitly assumed unchanged	Nested CES	LES utility	Nonspatial; Armington gross-trade
ENVISAGE (van der Mens-brugghe, 2013)	FAO/World Bank	CGE	Full economy	10/5	11/9 [§]	Price wedges (based on GTAP)	Nested CES	LES utility (w/ dynamic shifters)	Armington spatial equilibrium
EPPA (Paltsev et al., 2005)	MIT, USA	CGE	Full economy	2/0	7/9	Subsidies, taxes, tariff equivalents	Nested CES	Nested CES utility	Armington spatial equilibrium
FARM (Sands et al., 2013)	USDA, USA	CGE	Full economy	12/8	5/8 [§]	Price wedges (based on GTAP)	Nested CES	LES utility	Armington spatial equilibrium
GTEM (Pant, 2007)	ABARES, Australia	CGE	Full economy	7/7	5/8 [§]	Implicitly assumed unchanged	Nested Leontief and CES	CDE utility	Armington spatial equilibrium
MAGNET (Woltjer et al., 2011)	LEI-WUR, The Netherlands	CGE	Full economy	10/9	29/16	Price wedges (adjusted from GTAP); milk quotas	Nested CES	CDE private demand and Cobb- Douglas utility	Armington spatial equilibrium
GCAM (Wise and Calvin, 2011)	PNNL, USA	PE	Agriculture, Energy	18/0	7/9 [§]	Implicitly assumed unchanged	Leontief	Iso-elastic¶	Heckscher-Ohlin nonspatial, net-trade
GLOBIOM (Havlik et al., 2013)	IIASA, Austria	PE	Agriculture, forestry, Bioenergy	31/6	10/20	Implicitly assumed unchanged	Leontief	Iso-elastic¶	Enke-Samuelson- Takayama-Judge spatial equilibrium
IMPACT (Rosegrant et al., 2012)	IFPRI, USA	PE	Agriculture	32/14	101/14	Price wedges (based on PSE/CSE)	Iso-elastic¶	Iso-elastic¶	Heckscher-Ohlin nonspatial, net-trade
MAgPIE (Lotze- Campen et al., 2008)	PIK, Germany	PE	Agriculture	21/0	0/10	Implicitly assumed unchanged	Leontief	exogenous	Based on historical self-sufficiency rates

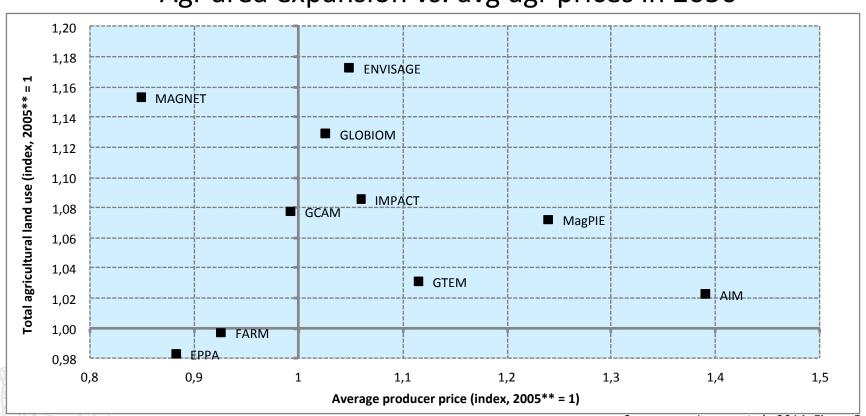

- comparative advantage: analysis of global agricultural production along with detailed regional disaggregation
- objective: providing long-term projections (i.e. model simulations, not predictions of the future), "to address a lack of long-term vision and consensus among policy-makers and researchers" → looking for trends/estimates not necessarily accuracy
- Questions
 - Q1: baseline based on reasonably assumptions, but how robust is it and what are the most sensitive assumptions?
 - Q2: how robust are the results obtained wrt technology adoption?

l'economia e l'impresa

What is in there?

IMPACT projections close to the average of models'

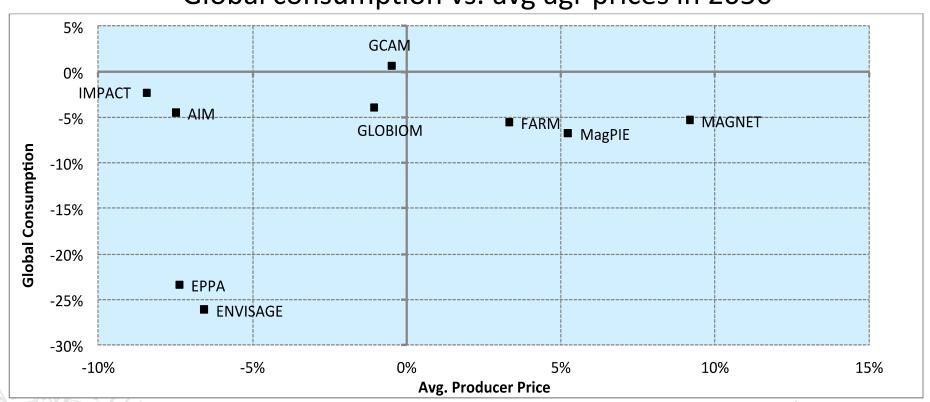
Crop vs. ruminant prices in 2050


Source: von Lampe et al., 2014: Figure 4

l'economia e l'impresa

What is in there?

IMPACT projections close to the average of models'


Agr area expansion vs. avg agr prices in 2050

Source: von Lampe et al., 2014: Figure 5

IMPACT projections close to the average of models'

Global consumption vs. avg agr prices in 2050

agreements:

- relative importance of productivity progress as compared to area expansions
- hotspots for future growth in agricultural demand (e.g. SSA, MENA) and production (eg. SSA, LAC)
- increasingly important role for international trade (e.g. import SSA, MENA, veg exp NAM, OCE, an exp BRA)

• disagreements:

- estimating future demand over a long-term horizon (small differences in income elasticities add to substantial differences in projected food consumption)
- accounting for technical progress in agriculture: assumptions about yield growth, but also factor deepening
- bioenergy: endogenous vs exogenous, 1st vs. 2nd gener.

What is not in there?

- CGE vs. PE
 - prices: CGE models usually smoother price path
 - institutions: CGE agents' behavioral rules, income distribution

Q3: is there any chance to incorporate some of these features through empirical relations/components feeding into the PE model?

Land dynamics

Q4: is it already in DSSAT? Or is an additional module (e.g. LPJmL) needed?

Q5: only land use switching or also new land conversion to agriculture

What may be in there?

- Improvements:
 - more economic research and better economic data
 - more bio-physical research and better linkage to the economic module

Q6: what are the most promising research areas in the short, medium and longer run?

A couple of concluding remarks on policy implications

- Differences in results across regions and within regions:
 - diversified policy packages
 - prioritization
- Many technology options:
 - single vs. multiple technology packages
 - sequencing of technology adoptions