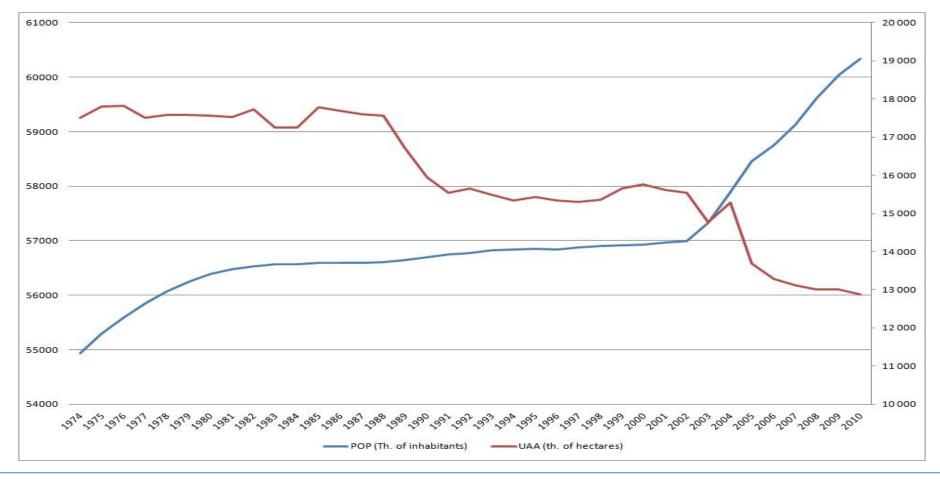


Land use patterns and sprawl: a spatial econometric threshold regression approach

by G Guastella, S Pareglio and P Sckokai


Motivation

- Urban Sprawl is regarded as a social undesirable phenomenon, as urban expansion
 - Subtracts resources to agricultural activities, challenging rural development
 - Threats the landscape
- The sentiment is exasperated by the belief the such urban expansion is sometimes unnecessary
- Economists attempted to explain the size of cities as a result of socioeconomic forces, finding that population and income dynamics, jointly with infrastructure levels and agricultural land values, explain 90% of the variation in city-size, rejecting the argument of sprawl
- Estimates have always considered large cities (>50000 inhabitants) but sprawl is most relevant in small cities where agricultural land is basically more available and at a lower price
- Using a sample of small and large cities we find evidence consistent with the hypothesis of uncontrolled land take in very small and small cities

Background

• Land-use dynamics are primarily determined by the socio-economic and environmental forces. In particular, population growth is the main driver of urban expansion.

Background

- However urban expansion has also dramatic consequences for agri-environmental equilibria
- Hence it is important to understand to what extent this urban expansion is
 - necessary meaning that responds to the increase in housing demand caused by population growth
 - **unnecessary** land take (speculative behaviours, land-consuming urban planning)
- The economists approach: utility maximizing households face a trade-off between housing price and the house-to-work commuting costs. The equilibrium fringe of the city is set where it is no more convenient for a single household to move far from the city.
- Using comparative statics it s demonstrated that the equilibrium size of a city depends on
 - Population and income **positively**
 - Transport costs and farmland values negatively

City size models

- $U_i = \beta_0 + \beta_1 P_i + \beta_2 I_i + \beta_3 T_i + \beta_4 A_i + \varepsilon_i$
- Brueckner and Fansler (1983) Wassmer (2006) Spivey (2008) Paulsen (2012) used this model to explain cross-city variation in urbanized area
- High shares of variation explained by the model (approximately 90%) lead to reject the sprawl
- Small cities
 - More available land and at a lower price
 - Influence of large cities
- Issues with estimation in small and contiguous cities
 - Contiguity relationships (house prices transmission, inter-city commuting)
 - Structural heterogeneity (different behaviour of small and large cities)

A method to explore structural instability in a spatial regression framework

How small is small?

• Set up a spatial regression

$$U_{i} = \rho W U_{i} + \beta_{0} + \beta_{1} P_{i} + \beta_{2} I_{i} + \beta_{3} T_{i} + \beta_{4} A_{i} + \sum_{k=1}^{K} \delta_{k} Z_{i,k} + \varepsilon_{i}$$

$$\beta_{k} = \beta_{k,0} + \beta_{k,1} D_{i};$$

$$k = 0,1,2,3,4$$

$$D_{i} \left(P_{i} > P^{*} \right)$$

- Estimate the model for all the values of P and find the value (threshold T1) that minimizes the RSS
- 2. Estimate the restricted model without the population threshold and the unrestricted, with the threshold
- 3. Use the Spatial Chow test (Anselin, 1988) to validate the restriction
- Since this is a LR test it is possible to find a confidence interval for LR(P^{*}) and a confidence interval for P^{*}

How large is large?

• Having defined T1 we search for T2

$$U_{i} = \rho W U_{i} + \beta_{0} + \beta_{1} P_{i} + \beta_{2} I_{i} + \beta_{3} T_{i} + \beta_{4} A_{i} + \sum_{k=1}^{K} \delta_{k} Z_{i,k} + \varepsilon_{i}$$

$$\beta_{k} = \beta_{k,0} + \beta_{k,1} D_{i}^{1} + \beta_{k,2} D_{i};$$

$$k = 0, 1, 2, 3, 4$$

$$D_{i} \begin{cases} D_{i} (P < P^{*}) \forall P^{*} < T^{1} \\ D_{i} (T^{1} < P < P^{*}) \forall P^{*} > T^{1} \end{cases}$$

- 1. Estimate the model for all the values of P but T1 and find the value (threshold T2) that minimizes the RSS
- 2. Estimate the restricted model with only one threshold and the unrestricted, with two thresholds
- 3. Use the Spatial Chow test to validate the restriction

Time for numbers

• Municipalities in the Lombardy Region, year 2012

Variable	Description of the variable	Mean
U	Urbanized (residential, industrial and commercial) area - hundreds of hectares (DUSAF 2012)	2.79
Ρ	Total Population - thousands of inhabitants (ISTAT 2011)	6.315
1	Average income – thousands of euros (MEF 2012)	19.509
Т	Transport Costs – inverse of the number of vehicles (cars) per inhabitant (ACI 2012)	1.649
Α	Farmland Value – thousands of euro per hectare (INEA 2012 and DUSAF 2012)	31.02
ROAD	Area occupied by the road network- hundreds of hectares (DUSAF 2012)	7.216
TRAIN	Area Occupied by the rail network - hundreds of hectares (DUSAF 2012)	1.8
AERO_D	Dummy - 1 if a portion of soil is occupied by airports (DUSAF 2012)	0.034
PORT_D	Dummy - 1 if a portion of soil is occupied by ports (DUSAF 2012)	0.048
CONSTR	Area occupied by - hundreds of hectares (DUSAF 2012)	3.751

Quantile	0%	10%	20%	30%	40%	50%	60%	70%	80%	90%	100%
Value	0.030	0.545	0.935	1.419	1.951	2.669	3.798	4.946	7.185	11.657	1274.31

- The first threshold is estimated at 18000 inhabitants and is significant
- The second threshold is estimated at 5500 inhabitants and is significant
- The second threshold is estimated at 50000 inhabitants and is not significant
- P, and T coefficients have the expected signs and are significant
- I coefficients have a negative sign and are not significant in small cities
- A coefficients have the wrong sign in small cities

	>18000	18000 – 5500	< 5500
Intercept	51.354***	14.508***	0.914***
	(3.393)	(1.459)	(0.298)
Ρ	0.087***	0.368***	0.531***
	(0.004)	(0.024)	(0.033)
I.	-0.275***	-0.189***	-0.009
	(0.064)	(0.032)	(0.016)
Т	-21.391***	-5.653***	-0.182 [*]
	(1.535)	(0.698)	(0.102)
Α	-0.028*	0.012**	0.009***
	(0.017)	(0.006)	(0.003)
ROAD	0.023***		
	(0.004)		
TRAIN	-0.024***		
	(0.008)		
AIR	0.536***		
	(0.206)		
PORT	0.719***		
	(0.171)		
CONSTR	0.012***		
	(0.004)		
rho	-0.199***		
	(0.031)		

Discussion

An increase of a city population by 1000 inhabitants translates into

- an increase of urbanized area of **8.7** ha in medium-large cities;
- an increase of urbanized area of **36.8** hectares in medium-small cities;
- an increase of urbanized area of **53.1** hectares in small cities.

Other things being equal, in small cities the land take associated to the dynamics of population is as much as seven times larger than in medium-large cities.