

4th AIEAA Conference

"Innovation, productivity and growth: towards sustainable agri-food production"

"Agri-environmental payments in Europe, USA and Australia: empirical evidence from auctions and contracts"

Vergamini Daniele¹, Benedict White² and Davide Viaggi¹

¹ University of Bologna/Department of Agricultural Sciences, Bologna, Italy ² University of Western Australia/School of Agricultural and Resource Economics, Perth,

daniele.vergamini@unibo.it

11-12 June, 2015 Ancona, Italy

Outline

- Objectives
- Background
- Methodology
 - Contract model
 - Auction model
- Case study and results
- Discussion

Objectives

- Simulate a menu of contracts and a one-shot procurement auction with FADN data 2012 in Emilia-Romagna Region (ERR)
- 2. Compare the contract and auction methods to flat payment for improving cost-effectiveness of agri-environmental payments (AEP)
- 3. Draw lessons about policy design options in EU, AUS and US for reducing information rents in real life

Background (1)

Common features (Ozanne and White, 2008) of AEP in EU, AUS, US:

- Participation involves <u>agri-environmental agreements</u> that must specify expected <u>outcomes</u>, <u>benefits</u> and <u>level of payment</u>
- 2. Presence of information asimmetries giving rise to:
 - 1. Hidden information or adverse selection (Chambers, 1992; Wu and Babcock 1996; Latacz-Lohmann and Van der Hamsvoort, 1997; Moxey et al., 1999; White, 2001)
 - 2. Hidden action or moral hazard (Choe and Fraser, 1998, 1999; Ozanne et al., 2001 and Fraser, 2002).

Background (2)

Bush Tender, Eco Tender, ALR

Methodology: Auction

Auction model: Latacz-Lohmann and Van der Hamsvoort (1997), Viaggi et al. (2008)

AUCTION RULES:

- 1. multiple units of AEM1
- 2. Bid (b) for a different level of activity
- 3. heterogeneity in costs
- 4. budget constrained (B)
- no cost payment is only function of the bid and farmers are risk neutral

When β =0 **the optimal bid becomes**:

$$b^*(\tau) = \max \left[\frac{1}{2} \left(k_t(\tau) + \overline{\beta} \right), \underline{\beta} \right]$$

Farmers offer a bid if:

$$U(\Pi_1 + b) \cdot [1 - F(b)] + U(\Pi_0) \cdot F(b) > U(\Pi_0)$$

NB. expectations are uniformly distributed in the range $\left[\underline{\beta},\ \overline{\beta}\right]$

 $\mathbf{k}(\tau)$ the cumulative compliance $k_t(\tau) = \Pi_0(\tau) - \Pi_1(\tau)$, the marginal cost

$$TC = \left[\frac{1}{2}\left(k(\tau) + \overline{\beta}\tau\right)\right] \le B$$

Comprehensive literature (McAfee and McMillian, 1987; Milgrom, 1985; Klemperer 2000)

Methodology: menu of contracts

Principal-agent model: Laffont and Tirole (1993), Moxey et al. (1999)

HYPOTHESIS:

- 1. two farm types (i=low "l", high "h")
- Payment for input reduction measure (AEM1)
- 3. Principal has no knowledge of site-specific production conditions
- 4. Farmers choose traditional farming practice vs compliance with agri-environmental measure (profit Π_{trad} and Π_{AEM1})

Objective: Maximize social welfare (finding the optimal contractual arrangement)

Perfect information

defining a contract that offer to farmers the payment coupled with the input reduction $[s_i^p, x_i^p]$ with $x_h^p > x_l^p$

Asymmetric information: adverse selection

Low productivity type 1 has an incentive to declare themselves as the high productivity type 2 and obtain: $[(x_h, s_h)]$

The government expenditure is increased to $2s_h^p > s_l^p + s_h^p$ with $s_l < s_h$

Second-Best Asymmetric Information

$$[(x_{l}^{a}, s_{l}^{a}); (x_{h}^{a}, s_{h}^{a})] \text{ with } x_{l}^{a} = x_{l}^{p}, x_{h}^{a} > x_{h}^{p} \text{ and } x_{h}^{a} > x_{l}^{a}$$

$$\text{and } s_{l}^{p} < s_{h}^{p} < s_{h}^{a} < s_{h}^{a}$$

Case study: Auction

Figure 1. Cost and bid as a function of participating UAA (AEM1)

Cumulated UAA (ha)

- Compliance cost function is derived from FADN data for ERR 2012
- 2. Consider 512 farmers that cultivate wheat in 2010-2011
- 3. $\underline{\beta}$ =0 and $\overline{\beta}$ =average of the payments for the AEM1 in the RDP ERR 2000-2006

Case study: Menu of Contracts

Contract hypothesis

- input reduction measure (first attempt of an empirical simulation)
- due to data constrains production technology from Moxey and White (1999) and Ozanne and White (2008)
- 3. $y=A_ix^{\beta}$ (x nitrogen input)
- better approach would be the continuum of types

Table 1. Simulation excercise data input

Parameters	Symbol	Value
Low productivity land	A1	0,90
High productivity land	A2	1,15
Production function slope	β	0,350
Output price (Euros/per tonne wheat)	P	190
Input price (Euros per kg nitrogen)	W	2.3
Profit maximizing input:		
Low productivity land (kg per ha)	x_1^*	151.75
High Productivity land (kg per ha)	x_1^*	220.85
Probability of Type i=1	γ	0,5

Results: Auction

Table.1 Percentage of total UAA of wheat in ERR participating in AEM1 within two budget scenarios (low budget and high budget).

Instruments/Budget scenario			% of total UAA of wheat with high budget 2 million of euros
M	larginal Payment	2,62	10,61
	Auction	0,62	3,78
F	lat rate payment	0,16	2,26

Source: own elaboration.

Results: Menu of Contracts

Table.2 Contract model preliminary results

Scenarios	Input Quotas		Transfer Payment	
	x1	x2	s1	s2
No Policy	151.75	220.85		
First-Best Perfect Information	64.1	93.2	58.0	84.5
Asymmetric Information adverse selection	93.2	93.2	84.5	84.5
Second-Best Asymmetric Information	87.0	73.13	109.2	125.8
Undifferentiated contract (flat rate)	78.49	78.49	81.46	81.46

Discussion and Conclusions

- 1. Potential to develop market instrument (auction) for the EU AEP
- Auctions and contracts have the potential to reduce farmers' information rent compared with a flat rate payment mechanism confirming the results of Moxey at all. (1999) and Viaggi et al. (2008).
- The variability of compliance costs seems to justify the application of complex contract mechanism

Several weakness:

- only two types of farmers
- farmers' expectation, budget, transaction costs <u>only indirectly</u> <u>modelled</u>
- environmental outcomes
- introduce the monitoring

Further development: continuum of farmers

Thank you!!

daniele.vergamini@unibo.it

Auction model

AUCTION RULES:

- 1. multiple units
- bid for a different level of activity
- 3. heterogeneity in costs
- budget constrained (def. max bid cap β)
- no cost payment is only function of the bid and farmers are risk neutral

Farmers offer a bid if:

$$U(\Pi_1 + b) \cdot [1 - F(b)] + U(\Pi_0) \cdot F(b) > U(\Pi_0)$$

<u>NB</u>. expectations are uniformly distributed in the range $\left[\underline{\beta}, \overline{\beta}\right]$

The optimal bid is determined by:

$$b^*=\max\left[\frac{1}{2}\left(\Pi_0-\Pi_1+\overline{\beta}\right),\underline{\beta}\right]$$

s.t. $b^*>\Pi_0-\Pi_1$

 $k(\tau)$ the cumulative compliance $k_t(\tau) = \Pi_0(\tau) - \Pi_1(\tau)$, the marginal cost

When β =0 the optimal bid becomes:

$$b^{*}(\tau) = \max \left[\frac{1}{2} \left(k_{t}(\tau) + \overline{\beta}\right), \underline{\beta}\right]$$

TC=
$$\left[\frac{1}{2}\left(k(\tau) + \overline{\beta}\tau\right)\right] \leq B$$

$$\tau^* = \left\lceil \frac{2B - k(\tau)}{\overline{\beta}} \right\rceil$$

$$\tau^*_{MFR} = \left[\frac{B}{k_t(\tau)}\right]$$

$$\tau^*_{AVG} = \left[\frac{B}{P}\right]$$

Contract model (1)

- Principal-agent relationship
- Payment for input reduction measure
- two farm types (i=1,2)
- the principal has no knowledge of site-specific production conditions
- traditional farming practice vs compliance with agri-environmental measure (profit Π_0 and Π_1)

 s_i the AE payment

(1+e) is the cost of transfer payments

 δ measure the benefit per hectares of enrolled area under the measure x_i^* is the optimal unconstrained input

Perfect information

Max

$$\Phi_i(b_i, x_i) = \delta a_i + (s_i - k_i(x_i)) - (1+e) s_i$$

with $a_i = (x_i^* - x_i)$

S.t.

$$s_i^p$$
- $k_i(\mathbf{x}_i^p) \ge 0$ [individual rationality constraint]

$$-(1+e)k_i'(\mathbf{x}_i^p) = \delta$$

defining a contract that offer to farmers the payment coupled with the input reduction $[s_i^p, x_i^p]$ with $x_2^p > x_1^p$

Contract model (2)

Perfect information vs Under Asymmetric information (adverse selection)

- Low productivity type 1 has an incentive to declare themselves as the high productivity type 2 and obtain: $[(x_2, s_2)]$
- The government expenditure is increased to $2s_2^p > s_1^p + s_2^p$ with $s_1 < s_2$

Second Best (Asymmetric information):

$$Max \Phi = \gamma [\delta(x_1^* - x_1^a) + (s_1^a - k_1(x_1^a)) - (1+e) s_1^a] + (1-\gamma) [\delta(x_2^* - x_2^a) + (s_2^a - k_2(x_2^a)) - (1+e) s_2^a]$$
 s.t.

$$IC1 = s_1^a - k_1(x_1^a) > s_2^a - k_1(x_2^a)$$

$$IC2 = s_2^{\overline{p}} - k_2(x_2^{\overline{a}}) > s_1^{\overline{a}} - k_2(x_1^{\overline{a}})$$

$$IR1 = s_1^a - k_1(x_1^a) \ge 0$$

$$IR2 = s_2^a - k_2(x_2^a) \ge 0$$

Solution: offer a contract $([(x_1^a, s_1^a); (x_2^a, s_2^a)]$

$$-(1+e)k'_1(\mathbf{x}_1^a) = v$$

$$-(1+e)k_2'(\mathbf{x}_2^a) = v + \frac{\gamma}{1-\gamma}e[k_2'(\mathbf{x}_2^a) - k_1'(\mathbf{x}_2^a)] < \mathbf{V}$$

[Incentive compatibility constraint 1,2]

[Incentive rationality constraint 1,2]

with
$$x_1^a = x_1^p$$
, $x_2^a > x_2^p$ and $x_2^a > x_1^a$
and $s_1^p < s_1^p < s_1^a < s_2^a$