CAP post-2013: alternative greening designs in Tuscany (Italy)

Gava O., Andreoli M., Bartolini F., Brunori G.

Outline

- The greening within the framework of the CAP 2014-2020
- Literature highlights
- Objectives of the study
- Methodological framework
 - Case study
 - Data
 - Environmental impact assessment
 - Cost-effectiveness
- Results:

/1 Impact of different greening designs on farm involvenent in the measure

- /2 Greening's environmental effect at the NUTS 3 level
- /3 Cost-effectiveness of alternative greening designs
- Closing remarks

The greening within the framework of the CAP 2014-2020

Regulation (EU) 1307/2013 – Direct payments (DP)

- DP disentanglement: basic payment (BP) = 58%, greening = 30% national ceiling
- Entitlement allocation: from historical to regional
- Partial convergence to a flat rate by the end of 2019
- Joint implementation of 3 agricultural practices beneficial for the climate and the environment on eligible arable land:
- (i) crop diversification
- (ii) permanent grassland maintenance*
- (iii) ecological focus areas (EFAs)

*In Italy, this prescription is applied at the national level

Literature highlights / 1

- Potential greening inability to cover farm costs ascribed to policy implementation
- Trade-offs between provision of ecosystem services and overall public and private policy costs

(Hart and Little, 2012; Hauck et al., 2014; Matthews, 2014)

- The renovated direct DP system is expected not to remunerate farmers for the associated
- loss of added value
- higher direct and indirect costs for bureaucratic requirements
- risk of sanctions
- thus, farmers could opt out the CAP (Shulz et al., 2014)

Literature highlights / 2

Compliance with greening requirements

- The great majority of EU's arable land is already conforming with crop diversification (Westhoek et al., 2012)
- Tuscany
- 90% farms are exempted from crop diversification
- 36.1% UAA is not meeting greening prescriptions: mainly southern municipalities (province of Grosseto), where farms are wider (Landi et al., 2014)

Effects on land demand

- Permanent grassland & EFA: farmland left fallow would cause a decrease in arable land (Was et al., 2014)
- Greening could increase the demand for land (Puddu et al., 2014)

Objectives of the study

- Ex-ante impact assessment of different levels of direct payments (greening and basic payment) to farmers
- Upscaling of farm-level results to identify the cost-effectiveness of the greening component
- Testing the model on arable farms at the NUTS 3 level (province of Grosseto, Italy)

Methodological framework

Ex-ante analysis of CAP's greening measure

- 1. Identification of representative farm types: *Non-hierarchical cluster analysis*
- 2. Definition of policy parameters: share of basic & greening components (Frascarelli, 2014)
- 3. Simulation of farmers' choice about greening: *Discontinue integer non linear model*
- 4. Impact assessment at the farm level. (Frascarelli, 2014)
- 5. Upscaling at the territorial level & measure of the contribution to environmental improvement: *Drivers of HNV farmland* (Paracchini et al., 2008; Paracchini and Britz, 2010)
- 6. Cost-effectiveness analysis

Case study

4th AIEAA Conference "Innovation, productivity and growth: towards sustainable agri-food production" 11-12 June, 2015 Ancona, Italy

Data

- Farms' costs: FADN
- Italian Agricultural Census 2010
- 1. Cluster analysis on a subsample: Province of Grosseto (NUTS 3)
- 7856 farms: arable farming systems only
- 32 representative clusters
- 2. Association of representative farms to "altitude" (plain, hill, mountain)
- 3. Cluster classification criteria
- (i) farmland surface area
- (ii) amount of household and/or off-farm labour employed
- (iii) amount of single farm payments

Theoretical model

$$\boldsymbol{\pi}_{i} = \left(\boldsymbol{\pi}_{i}^{0}; \boldsymbol{\pi}_{i}^{cc}; \boldsymbol{\pi}_{i}^{cc+g}\right)$$

 $\pi_i^0 = \sum_{j=1}^J p_i \cdot f_i(...) - k_j(...)$

0 = out the CAP $cc = \text{cross-compliance} \rightarrow \text{BP only}$ g = compliance with greeningprescriptions $\rightarrow \text{BP} + \text{greening payment}$

Farmers would opt for *cc* only

$$\pi_i^{cc+g} = \left[\pi_i^0 - C_i(e_{cc}, e_g)\right] + DP_i \cdot l_i > 0$$

 $\pi_{i}^{cc} = |\pi_{i}^{0} - C_{i}(e_{cc})| + (1 - \alpha)DP_{i} \cdot l_{i} > 0$

Farmers would comply with g

Environmental impact assessment

HNV drivers (Paracchini et al., 2008; Paracchini and Britz, 2010)

- (i) Diversity Crop Index (DCI): crop diversity in non-grassland areas; proxy: Shannon Index
- (i) Management Intensity Index (MII)^{*}: management intensity in non-grassland areas; proxy: nitrogen inputs; $N_{inputs} < 20 \text{ kg/ha} => \text{MII} \rightarrow 0$; $N_{inputs} > 190 \text{ kg/ha} => \text{MII} \rightarrow 1$
- (i) Livestock Intensity Index (LII)*: livestock pressure over grassland areas and EFAs (biodiversity); livestock size is assumed fixed => LII measures the changes in grassland due to greening

*Nitrate Directive is considered

Cost-effectiveness analysis

$$CE_{i} = \frac{E_{i}}{C_{i}}$$

$$E_{i} = 100 \left(\sqrt{DCI_{i} * MII_{i}}} \left(\frac{\sum_{s \notin G} x_{s}}{\sum_{s} x_{s}} \right) + LII_{i} \frac{\sum_{s \in G} x_{s}}{\sum_{s} x_{s}} \right) = HNVdrivers$$

C_i = payment level: -50%DP, current payment, +50%DP

Results/1

Impact of different greening designs on farm involvenent in the measure <u>Province of Grosseto:</u> Share of farms and UAA involved in the greening

	Direct Payment Level								
Snare of Greening	No payment		-50% DP		Current		+50% DP		
-	Farms	UAA	Farms	UAA	Farms	UAA	Farms	UAA	
0	-	_	-	-	-	-	-	-	
0.1	-	_	0.1892	0.2311	0.6446	0.6141	0.6942	0.6714	
0.2	-	-	0.6446	0.6141	0.6942	0.6714	0.7028	0.6944	
0.3	-	-	0.6942	0.6714	0.7028	0.6944	0.7061	0.7230	
0.4	-	-	0.6942	0.6714	0.7061	0.7230	0.7130	0.7624	
0.5	-	-	0.6942	0.6714	0.7130	0.7624	0.7130	0.7624	
0.6	-	-	0.7028	0.6944	0.7130	0.7624	0.7130	0.7624	
0.7	-	-	0.7028	0.6944	0.7130	0.7624	0.7130	0.7624	
0.8	_	-	0.7061	0.7230	0.7130	0.7624	0.7130	0.7624	
0.9	-	-	0.7061	0.7230	0.7130	0.7624	0.7130	0.7624	
1	-	-	0.7130	0.7624	0.7130	0.7624	0.7130	0.7624	

Results/2 Greening's environmental effect at the NUTS 3 level

HNV drivers: Upscaling at the NUTS 3 level (province of Grosseto)

Share of	Direct Payment Level							
Greening	No payment	-50% DP	Current	+50% DP				
0	0.263	0.288	0.284	0.282				
0.1	0.263	0.364	0.370	0.377				
0.2	0.263	0.372	0.382	0.384				
0.3	0.263	0.377	0.384	0.404				
0.4	0.263	0.376	0.393	0.409				
0.5	0.263	0.386	0.409	0.409				
0.6	0.263	0.386	0.409	0.409				
0.7	0.263	0.385	0.409	0.409				
0.8	0.263	0.393	0.409	0.409				
0.9	0.263	0.404	0.409	0.409				
1	0.263	0.409	0.409	0.409				

Results/3 Cost-effectiveness of alternative greening designs

Closing remarks

- Area based payments & partial convergence
- Rules complexity
- EFA and diversification costs borne by farmers would be higher in more fertile rather than in less fertile land (Shulz et al., 2014)
- Farm structure affects greening's acceptance by farmers
- Different times and places under study make it difficult the comparison among research studies
- Paperwork costs still uncertain

University of Pisa, Pisa (Italy) Department of Agriculture Food and Environment

Thank you for your attention

Gava O., Andreoli M., Bartolini F., Brunori G.

oriana.gava@for.unipi.it