

# Economic modelling of climate change scenarios and adaptation of Mediterranean agriculture

<u>Cortignani Raffaele</u>, Dono Gabriele, Dell'Unto Davide DAFNE, University of Tuscia, Viterbo, Italy

4<sup>th</sup> AIEAA Conference"Innovation, productivity and growth: towards sustainable agri-food production"

11-12 June, 2015 Ancona, Italy

## **Objectives**

- Define a possible strategy to integrate climate change aspects into mathematical models
  - using Discrete Stochastic Programming (DSP)
- Evaluate the economic impact of climate change on the agricultural sector
  of the study area (but transferable to other cases)

#### Study area: CBI Oristanese



## **Two sides of agriculture**

#### Irrigated area

 Intensive production and relevant economic dimension (dairy, citrus, vegetables)

## Rain-fed area

Cereals and dairy sheep sectors, important to prevent land abandonment

## **Territorial structure – Farm types**

|                       | Farms (n) | Land (ha) | Net Income<br>(€ 000) |
|-----------------------|-----------|-----------|-----------------------|
| <b>WUA facilities</b> |           |           |                       |
| Rice                  | 24        | 115.3     | 139.5                 |
| Citrus                | 68        | 12.6      | 45.7                  |
| Cattle A              | 130       | 30.9      | 199.2                 |
| Cattle B              | 40        | 31.9      | 112.7                 |
| Greenhouse            | 46        | 12.9      | 29.7                  |
| Vegetables - Cereals  | 562       | 22.2      | 34.2                  |
| Cereals - Forages     | 55        | 146.4     | 126.3                 |
| Tree and arable crops | 100       | 5.8       | 11.8                  |
| Rain-fed              |           |           |                       |
| Vegetables - Fruit    | 100       | 4.1       | 18.2                  |
| Cereals - Forages     | 94        | 24.5      | 16.9                  |
| Sheep A               | 45        | 86.9      | 43.6                  |
| Sheep B               | 188       | 41.2      | 16.1                  |
| Sheep C               | 129       | 62.4      | 42.5                  |

# **Climate Model and Scenarios**

- The numerical model for future climate scenarios <u>downscaling</u> is the Regional Atmospheric Modelling System - RAMS (www.atmet.com).
- RAMS is forced from a global simulation model, from surface temperatures of the sea coming from the ocean model coupled with the atmosphere.
- The global climate change is simulated by ECHAM 5.4 developed and used by the Euro - Mediterranean Centre for Climate Change (CMCC -<u>www.cmcc.it</u>).
- The greenhouse gas emissions scenario is A1B.
- Two scenarios:
  - Present climate o Current (2000 2010)
  - Near future climate o Future (2020 2030)
- Estimation of probability distributions of agro-climatic events

## **Evapotranspiration**



## Spring Hay yield from rain-fed crops



# **TH Index max**



# **DSP: Choices under uncertainty**

- Farmer's annual decision making under uncertain agroclimatic events:
  - formulating hypotheses about the pdfs of uncertain parameters, and discretize them (states)
  - partial correction of wrong decisions during the year
- Farmer minimizes the possible impact of sub-optimality by choosing the state with the highest expected income, once corrective actions are undertaken
  - resulting income lower than optimal solution under certainty (cost)
- The cost can increase if CC alters representative values or probability of states of nature

## **DSP: tree decision**

DSP Choice Process: eg 3 stages with uncertainty on 2 uncertainty events



### **DSP: Mathematical formulation**

$$\max_{x_{n_s}, cr_{n_s}, ca_{n_s}} z = \sum_s P_s * (GI_s * x_{n_s} - C_{cr} * cr_{n_s} - C_{ca} * ca_{n_s})$$
(1)

subject to

$$A_{s} * x_{n_{s}} \leq B_{s} + cr_{n_{s}} \qquad \forall s \qquad (2)$$

$$x_{n_{s}} = x_{n+1_{s}} \qquad \forall s \qquad (3)$$

$$N_{s} * Y_{s} * x_{n_{s}} + ca_{n_{s}} \geq R_{s} \qquad \forall s \qquad (4)$$

$$x_{n_s} \ge 0, cr_{n_s} \ge 0 \text{ and } ca_{n_s} \ge 0 \qquad \forall s$$
 (5)

| Management Issues                                                                                                                  | <b>Uncertain Parameter</b>                                                | DSP Stages                                                                                                | <b>Corrective Actions</b>                                                                                                                                            |  |
|------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Meet nutritional needs of<br>flocks, given uncertainties<br>on yields of pastures in Fall<br>and Spring, and on hay<br>production. | Autumn grazing yields of pasture                                          |                                                                                                           | Use stocks of hay and buy feed in<br>Autumn, at additional costs, when<br>lowest yields of grazing prevent<br>meeting nutritional needs of flocks.                   |  |
|                                                                                                                                    | Autumn grazing yields of hay-crop                                         | I: land allocation, uncertainty on<br>Autumn and Spring grazing<br>yields, and Spring hay yields          |                                                                                                                                                                      |  |
|                                                                                                                                    | Spring grazing yields of pasture                                          | II: known Autumn grazing yield                                                                            | Use residual stocks of hay and buy<br>feed in Spring/Summer, at<br>additional costs, when lowest yields<br>of grazing prevent meeting<br>nutritional needs of flocks |  |
|                                                                                                                                    | Spring yields of hay-crop                                                 | grazing and hay                                                                                           |                                                                                                                                                                      |  |
| Allocate water of dam with<br>uncertain irrigation needs<br>of crops Irrigation needs                                              | Irrigation needs of ryegrass in April-May                                 | I: land allocation, uncertainty on irrigation needs of ryegrass and                                       |                                                                                                                                                                      |  |
|                                                                                                                                    | Irrigation needs of Summer crops in June-<br>August                       | Summer crops<br>II: known irrigation need of<br>ryegrass<br>III: known irrigation need of<br>Summer crops | Take groundwater, at<br>additionalcosts, when higher<br>irrigation requirements generate<br>scarcity of water dam                                                    |  |
| Meet nutritional needs of<br>dairy cattle with uncertain<br>yields of farm's fodder                                                | Yields of ryegrass, connected to its<br>irrigation needs                  | I:land allocation, uncertainty on yields of ryegrass and summer                                           | Buy feed, atadditionalcosts, when<br>lowest yields of farm's<br>fodderprevent meeting nutritional<br>needs of the livestock                                          |  |
|                                                                                                                                    | Yields of corn silage and alfalfa, connected<br>to their irrigation needs | fodder crops<br>II: known yield of ryegrass<br>III: known yield of summer<br>fodder crops                 |                                                                                                                                                                      |  |

Economic results for the present climatic scenario, absolute values (000  $\notin$ ), and future climatic scenario, [percentage changes of future over current (% $\Delta$ )] for the total case study area, the irrigated sub-zone served by *WUA facilities* and the *rainfed* sub-zone

|                                  | Current scenario (000 €) |         | Future scenario (% $\Delta$ ) |             |             |             |
|----------------------------------|--------------------------|---------|-------------------------------|-------------|-------------|-------------|
|                                  | Total                    | WUA     | Rainfed                       | Total       | WUA         | Rainfed     |
| <br>Total revenues               | 204,730                  | 179,050 | 25,680                        | -0.3        | -0.4        | 0.8         |
| Animal                           | 89,806                   | 75,278  | 14,528                        | -1.1        | <u>-1.3</u> | 0.0         |
| Variable costs                   | 130,010                  | 114,024 | 15,986                        | 1.1         | 0.5         | 5.5         |
| Technical means                  | 67,796                   | 61,798  | 5,998                         | 1.5         | 0.8         | <u>8.1</u>  |
| Feed                             | 23,067                   | 19,008  | 4,059                         | 0.7         | -5.4        | <u>29.3</u> |
| Extra-farm labor                 | 7,738                    | 5,707   | 2,031                         | -2.6        | -0.6        | -8.0        |
| Payments to the WUA              | 2,144                    | 2,107   | 37                            | 1.2         | 1.2         | 0.0         |
| Water pumping from farm<br>wells | 278                      | 121     | 156                           | 0.5         | -0.2        | 1.0         |
| Gross margin                     | 106,365                  | 89,095  | 17,270                        | -1.9        | -1.5        | -3.8        |
| Net income                       | 78,078                   | 65,945  | 12,134                        | <u>-2.6</u> | <u>-2.1</u> | <u>-5.4</u> |

# Net Income per typology and farm: *present climate scenario* [absolute values (000 €)] and *future* climate scenario [percentage changes of future over current (%∆)]

|                       | Current  | Future scenario     |              |
|-----------------------|----------|---------------------|--------------|
|                       | Typology | Representative farm | <b>(%</b> Δ) |
| Rice                  | 4,097    | 170.7               | <u>9.9</u>   |
| Citrus                | 2,670    | 39.3                | -0.01        |
| Cattle A              | 26,355   | 202.7               | <u>-5.1</u>  |
| Cattle B              | 6,825    | 170.6               | <u>-5.9</u>  |
| Greenhouse            | 1,231    | 26.8                | 0.4          |
| Vegetables - Cereals  | 18,656   | 33.2                | -0.8         |
| Cereals – Forages     | 4,902    | 89.1                | 2.2          |
| Tree and arable crops | 1,209    | 12.1                | 0.04         |
| Vegetables – Fruit    | 1,014    | 10.1                | -0.04        |
| Cereals - Forages     | 2,691    | 28.6                | 0.01         |
| Sheep A               | 2,461    | 54.7                | <u>-5.3</u>  |
| Sheep B               | 1,984    | 10.5                | <u>-11.8</u> |
| Sheep C               | 3,984    | 30.9                | <u>-7.4</u>  |

# **Conclusions**

- Water availability is strategic for adaptation of agriculture to future climatic scenarios
- Water accumulation is to be considered for dealing with the changing variability of CC
- Rain-fed agriculture must be sustained also for the prevention of land abandonment
- The economic impacts on milk production is relevant
- This approach is transferable to other cases

## Next steps

The economic impacts on milk production matter

livestock integration needs improvements

Simulation of AgMip-CAPRI scenarios

# Impact of climate on weeds and pests spread



# Economic modelling of climate change scenarios and adaptation of Mediterranean agriculture

<u>Cortignani Raffaele</u>, Dono Gabriele, Dell'Unto Davide DAFNE, University of Tuscia, Viterbo, Italy

4<sup>th</sup> AIEAA Conference"Innovation, productivity and growth: towards sustainable agri-food production"

11-12 June, 2015 Ancona, Italy