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Objective

What is the aim?

Objective:
Investigating the impact of the U.S. Federal Reserve

monetary policy on crude oil future price (COFP)
volatility.
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Background and Motivations

Why is investigating crude oil volatility important?

• Persistent changes in crude oil volatility may affect the risk exposure of
both producers and industrial consumers, altering the incentives to invest
in inventories and facilities for production and transportation (Pindyck,
2004);

• More risky crude oil market leads to economic instability for both energy
net-exporter and net-importer countries (Narayan and Narayan, 2007).
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Background and Motivations

Literature review

• Several authors have addressed the modeling of the volatility in
crude oil markets using GARCH models (Agnolucci, 2009, Bernard
et al., 2008, Efimova and Serletis, 2014, Sadorsky, 2006).

• According to Kilian (2009) and Gargano and Timmermann (2014),
macroeconomic and financial variables are important determinants
of crude oil price changes.

• Conrad et al. (2014) have recently investigated the impact of some
macroeconomic variables on the COFP volatility. Using a
GARCH-MIDAS model, they find that variables containing
information on current and future economic activity are helpful
predictors of COFP volatility.
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Background and Motivations

Why is studying the relationship monetary policy - COFP volatility important?

• In order to shed light on the proactive vs reactive role of monetary
policy (Bernanke and Gertler, 1999)⇒ If monetary policy affected
crude oil price volatility, monetary authorities could effectively
manage the fluctuations of the former in order to anticipate the
fluctuations of the latter.

• During last years, both the U.S. monetary policy and the COFP
have exhibited severe shocks.
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Background and Motivations

A Cold Fact

Crude oil future prices and effective federal fund rates
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Research questions

Research questions

1 Does the U.S. monetary policy affect the crude oil future price
(COFP) volatility?

2 Does including the U.S. monetary policy in the COFP volatility
model improve the volatility predictions?
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Modeling the volatility

A general conditional heteroskedastic model

A general conditional heteroskedastic model can be defined as:

ri = µ+ hiεi i = 1, · · · , I;

h2i = f(Φi−1; Θ), (1)

where

• µ is the (unconditional) mean;

• h2i is the conditional variance at day i;

• εi is an iid process with zero mean and unit variance;

• Φi denotes the information set up to day i;

• Θ is the parametric space.
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Modeling the volatility

GARCH-MIDAS model

In the GARCH-MIDAS framework, the general conditional heteroskedastic model is

defined as:

ri,t = µ+
√
τt × gi,tεi,t, ∀i = 1, · · · , Nt, (2)

• ri,t represents the log-return for day i of the period t;

• µ is the (unconditional) mean;

• εi,t|Φi−1,t ∼ N(0, 1), where Φi−1,t denotes the information set up to day
i− 1 of period t.
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Our approach

Our approach

• We plug a U.S. monetary policy proxy into the GARCH equation of
crude oil volatility. Given that such a proxy is sampled monthly, we
use a GARCH-MIDAS approach (Engle et al., 2013)

• Furthermore, according to (He et al., 2010, Krichene, 2006), we
also control for the U.S. aggregate demand and the global crude oil
supply as additional COFP volatility determinants.
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Our approach

An empirical issue

• In the aftermath of the financial crisis EFFR is flat and close to zero;

• From the end of the 2008 the Federal Reserve has purchased
long-term assets in order to reduce real long-term interest rates.

Effective federal fund rates and Quantitative Easing

U.S. Monetary Policy
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Data

Empirical analysis

We consider the period from January 2, 1998 to December 31, 2014:

• Daily data for the dependent variable:

I Data on COFP from Bloomberg;

• Monthly data on macroeconomic variables:

I Data on Effective Federal Fund Rate (EFFR) from Federal
Reserve Bank of St. Louis (FED);

I Data on Quantitative Easing measures (QE) from (Fawley and
Neely, 2013) and FED;

I Data on the U.S. Industrial Production Index (IndPro) from
FED;

I Data on the Global Oil Production Index (OilP) from U.S.
Energy Information Administration.
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Estimation Results

Estimations results
Estimates of GARCH(1,1) and GARCH-MIDAS models

M0 M1 M2 M3
(1998-2014) (1998-2014) (1998-2008) (2009-2014)

µ 4.9 · 10−4 4.3 · 10−4 1.1·10−3∗∗ 3.2 · 10−4

α 0.053∗∗∗ 0.070∗∗∗ 0.078∗∗∗ 0.182∗∗∗

β 0.944∗∗∗ 0.923∗∗∗ 0.874∗∗∗ 0.634∗∗∗

ψ 2.7·10−6∗∗

m −7.376∗∗∗ −7.617∗∗∗ −8.350∗∗∗

θMP −0.806∗∗∗ −2.586∗∗∗ 0.019∗∗

θIndPro 0.345∗∗∗ 0.970∗∗∗ −0.459∗∗∗

θOilP −0.054 0.333∗∗∗ 1.183∗∗∗

ω11 1.019∗∗∗ 1.010∗∗∗ 39.526∗∗∗

ω12 4.933∗∗∗ 1.499∗∗∗ 7.335∗∗∗

ω21 4.571∗∗∗ 2.440∗∗∗ 12.216∗∗∗

ω22 1.004∗∗∗ 6.259∗∗∗ 37.934∗∗∗

ω31 10.748∗∗∗ 8.255∗∗∗ 5.420∗∗∗

ω32 1.055∗∗∗ 3.745∗∗∗ 15.261∗∗∗

∗, ∗∗ and ∗∗∗ denote significance at the 10%, 5% and 1% levels, respectively.
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Forecasting and forecasting accuracy

Forecasting accuracy

We compare the forecast accuracy of the GARCH-MIDAS model with
respect to that of a GARCH(1,1) model using two tests⇒ the Diebold
and Mariano (1995) (DM) and the Clark and West (2007) (CW) tests).

• The CW test introduces a correction adjusting the point estimate of
the difference between the MSEs of the two models for the noise
associated with the larger model’s forecast. Thus, it properly works
also for nested models.

• The loss function comparing the benchmark (the squared daily
returns) to the prediction of each model is the mean squared error;

• The loss differential at time t is defined as

dt = L
(
bt, σ̂

2
G,t

)
− L

(
bt, σ̂

2
M,t

)
, t = 1, · · · , h. (3)
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Forecasting and forecasting accuracy

Forecasting accuracy

Forecasting ability comparative analysis: GARCH MIDAS vs GARCH (1,1)

Short-term variance Long-term variance

DM CW DM CW

2003 −0.33 0.63 −0.81 −1.14
2004 −0.74 −1.13 −0.73 −1.47
2005 −0.21 1.06 −0.52 0.75
2006 0.48 3.80∗∗∗ 0.26 3.90∗∗∗

2007 −0.76 −0.95 −0.57 −1.04
2008 1.10 3.49∗∗∗ 0.52 1.39∗

2014 −0.44 0.68 −0.25 1.02

2003-2008 1.00 3.54∗∗∗ 0.43 1.31∗

∗, ∗∗ and ∗∗∗ denote significance at the 10%, 5% and 1% levels, respectively.
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Conclusions

Answers to research questions

1 Does the U.S. monetary policy affect the crude oil future price
volatility?

I Yes, the U.S. monetary policy affects COFP volatility. In
particular, an expansionary (restrictive) monetary policy
anticipate a positive (negative) variation in COFP volatility.

2 Does the U.S. monetary policy help the COFP volatility predictions?

I Yes, including the monetary policy proxy (as well as the other
economic variables) in the COFP volatility model improves the
predictions especially when such a proxy experienced a huge
shock in a previous period.
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The GARCH model

We start from the GARCH (p,q) model (Bollerslev 1986), that when
p = q = 1 becomes

h2t = ψ +

p∑
i=1

αi (rt−i − µ)2 +

q∑
i=1

βih
2
t−i, (4)

with ψ > 0, αi ≥ 0 and βi ≥ 0 sufficient conditions for ensuring the
positiveness of the conditional variance.
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αi (rt−i1 − µ)2 +

q∑
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βiht−i1
2, (4)
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GARCH-MIDAS model (ii)

Within the GARCH-MIDAS framework, the conditional variance is the product
of two components (τt × gi,t), is given by the product of two components:

• The short-run component gi,t follows a mean-reverting unit GARCH(1,1)
process:

gi,t = (1− α− β) + α
(ri−1,t − µ)

2

τt
+ βgi−1,t, (5)

with α > 0, β ≥ 0 and α+ β < 1.

• The long-run component τt is obtained as a filter of the J exogenous
variables Xt,j :

τt = exp

m+ θj

Kj∑
k=1

δk,j(ω)Xt−k,j

 , with j = 1, · · · , J. (6)
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GARCH-MIDAS estimation

• The parametric space of the GARCH-MIDAS model is
Θ = {µ, α, β,m, θj , ω1,j , ω2,j} with j = 1, · · · , J .

• The estimation of the unknown parameters is carried out by maximizing
the following log-likelihood provided by Engle et al. (2013):

LLF = −1

2

T∑
t=1

[
Nt∑
i=1

[
log(2π) + log(gi,tτt) +

(ri,t − µ)
2

gi,tτt

]]
. (7)
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Other control variables

U.S. industrial production, oil global production

Aggregate Demand and Supply
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Descriptive Statistics

Descriptive statistics of the variables included in the models (percent variation)

∆COFP ∆EFFR ∆QE ∆IndPro ∆OilP

N. of obs. 4266.000 204.000 72.000 204.000 204.000
Minimum −0.165 −0.960 −35.373 −4.208 −7.792
Mean(%) 0.026 −2.637 215.484 11.926 4.064
Median 0.001 0.000 0.901 0.163 0.058
Maximum 0.164 0.280 57.715 2.080 2.929
Standard dev.(%) 2.396 17.818 1527.240 68.879 99.342
Skewness −0.127 −2.031 1.205 −1.825 −2.320
Excess kurtosis 4.524 6.327 3.755 8.747 17.876
Jarque Bera 3653.336∗∗∗ 492.601∗∗∗ 14.818∗∗∗ 782.639∗∗∗ 2965.044∗∗∗

Ljung Box(20) 1.598 97.754∗∗∗ 15.328∗∗∗ 9.438∗∗∗ 0.766
ADF −15.389∗∗ −3.040 −4.647 −3.058 −6.233∗∗

Phillips Perron −66.749∗∗ −5.894∗∗∗ −17.755 −12.020∗∗∗ −18.687∗∗∗

A. Amendola, V. Candila, A. Scognamillo AIEAA, Ancona June 11, 2015 5 / 10



Forecasting

• The evaluation of out-of-sample performance is the “ultimate test of
a forecasting model” (Stock and Watson, 2007);

• According to (Asgharian et al., 2013) we use a rolling forecasting
scheme adopting a window length of 5 years and letting the
estimate parameters be fixed for the following 6 months;

• We investigate both the short-term and the long term forecasting
performance.
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Forecasting example

• Let us considering the first estimation period from January 1998 to
December 2003.

• We estimate the parameters with the selected volatility model and
then we keep them fixed from January 2004 to June 2004 to predict
the volatility conditioned on the macro-variables;

• Afterwards, the window moves forward such that the estimation
period goes from July 1998 to June 2004 while the evaluation
period consists of the last 6 months of 2004.

• Thus, for M2 we have 6 years of volatility predictions, from 2003 to
2008. While for M3, we only have two volatility prediction in the
timespan which goes from 2009 to 2014.
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Short and Long Term Forecasting performance

• In the short-run, we use the squared returns as benchmark In order
to evaluate the forecast performance;

• As for the long-run prediction (monthly horizon), we compare the
monthly variances obtained by summing the volatility predictions
within each month with the monthly sum of the squared daily
returns as benchmark.
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Forecasting comparison of nested models

• According to Giacomini and White (2006), the DM should not be
applied to situations where the competing forecasts are obtained
using two nested models;

• However, Giacomini and Rossi (2013) argue the DM test remains
asymptotically valid (under some regularity assumptions), even for
nested models, when the size of the estimation sample remains
finite as the size of the evaluation sample grow, i.e. when the
forecasting scheme is the rolling one.
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Forecasting accuracy

As argued by Hansen (2005), when the aim of interest of the superior
predictive ability of a model (GARCH-MIDAS) against a benchmark
(GARCH(1,1)), the system of the hypotheses has to be formulated as
follows:

{
H0 : d = 0;

H1 : d > 0,
(8)

where d = E(dt), and dt, the loss differential at time t is defined as

dt = L
(
bt, σ̂

2
G,t

)
− L

(
bt, σ̂

2
M,t

)
, t = 1, · · · , h. (9)

In (9), L(·) represents the chosen loss function used to evaluate the
distance between the volatility proxy, bt and the volatility prediction of
the GARCH(1,1), denoted with σ̂2G,t and the volatility prediction of the
GARCH-MIDAS, indicated with σ̂2M,t. Moreover, h represents the length
of the evaluation period. Throughout the section, L(·) is the MSE.
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