Technology adoption and the multiple dimensions of food security: the case of maize in Tanzania

0.

Emiliano Magrini¹ Mauro Vigani²

¹Economic and Social Affairs (ESA), Food and Agricultural Organization, Rome, Italy

²European Commission, JRC-IPTS, Seville, Spain

3rd AIEAA Conference, Alghero, 25-27 June 2014

1 / 20

Outline of the presentation

- Methodology 2
- 3 Variables and Data
- **Empirical Results** 4
- Conclusions 5

< A

3

• Lack of adequate productive resources is one of the most severe causes of food insecurity. **Agricultural technologies** have a special role because they might boost crop productivity, allowing for higher production and lower food prices and - potentially - increasing welfare

・ロト ・四ト ・ヨト ・ヨト ・ヨ

- Lack of adequate productive resources is one of the most severe causes of food insecurity. **Agricultural technologies** have a special role because they might boost crop productivity, allowing for higher production and lower food prices and potentially increasing welfare
- Many authors try to estimate the impact of technology adoption on HH welfare using **indirect monetary** (income and expenditure) and/or **production measures** (farm production and yields), and its consequent effect on **synthetic poverty indexes**

- Lack of adequate productive resources is one of the most severe causes of food insecurity. **Agricultural technologies** have a special role because they might boost crop productivity, allowing for higher production and lower food prices and potentially increasing welfare
- Many authors try to estimate the impact of technology adoption on HH welfare using indirect monetary (income and expenditure) and/or production measures (farm production and yields), and its consequent effect on synthetic poverty indexes
- Overall, this strand of literature shows that technologies have a positive impact on welfare for some African countries (i.e. Ethiopia, Nigeria, Tanzania, Uganda and Zambia) and contribute to reduce poverty.

3 / 20

- Lack of adequate productive resources is one of the most severe causes of food insecurity. **Agricultural technologies** have a special role because they might boost crop productivity, allowing for higher production and lower food prices and potentially increasing welfare
- Many authors try to estimate the impact of technology adoption on HH welfare using indirect monetary (income and expenditure) and/or production measures (farm production and yields), and its consequent effect on synthetic poverty indexes
- Overall, this strand of literature shows that technologies have a positive impact on welfare for some African countries (i.e. Ethiopia, Nigeria, Tanzania, Uganda and Zambia) and contribute to reduce poverty.
- However, monetary and production indicators can only partially capture the impact on food availability and food access while a number of further assumptions are necessary to impute also a causal relationship with food utilization and stability.

- Lack of adequate productive resources is one of the most severe causes of food insecurity. **Agricultural technologies** have a special role because they might boost crop productivity, allowing for higher production and lower food prices and potentially increasing welfare
- Many authors try to estimate the impact of technology adoption on HH welfare using indirect monetary (income and expenditure) and/or production measures (farm production and yields), and its consequent effect on synthetic poverty indexes
- Overall, this strand of literature shows that technologies have a positive impact on welfare for some African countries (i.e. Ethiopia, Nigeria, Tanzania, Uganda and Zambia) and contribute to reduce poverty.
- However, monetary and production indicators can only partially capture the impact on food availability and food access while a number of further assumptions are necessary to impute also a causal relationship with food utilization and stability.

Aim and Added Values

Aim

Providing a comprehensive analysis on the impact of maize technologies at household level in Tanzania, disentangling the effect of improved maize seeds and inorganic fertilizers on each of the four dimensions of food security

イロト イポト イヨト イヨト

Aim and Added Values

Aim

Providing a comprehensive analysis on the impact of maize technologies at household level in Tanzania, disentangling the effect of improved maize seeds and inorganic fertilizers on each of the four dimensions of food security

Added Values

- we use a **nationally representative dataset**, going beyond the usual approach to investigate local case studies which are not completely informative to implement policies at national level
- we investigate the adoption of **two agricultural technologies**, namely **improved seeds and inorganic fertilizers**, instead of partially looking to a single innovation
- we do not limit ourselves to analyze the impact on production/monetary proxies, rather we use direct and specific measures for the **four dimensions of food security**

イロト イポト イヨト イヨト

Linking Technology Adoption to FS pillars: Hypotheses

Food Availability

ATs increase productivity (supply of food per unit of agricultural land) and therefore the overall domestic production (Feder et al., 1985);

Food Availability

ATs increase productivity (supply of food per unit of agricultural land) and therefore the overall domestic production (Feder et al., 1985);

Food Access

higher productivity and lower production costs raise crop income for farmers increasing food expenditure and - potentially - the calories and micronutrients intake (Pieters et al., 2013; Kassie et al., 2011);

5 / 20

- 4 週 ト - 4 ヨ ト - 4 ヨ ト - -

Food Availability

ATs increase productivity (supply of food per unit of agricultural land) and therefore the overall domestic production (Feder et al., 1985);

Food Access

higher productivity and lower production costs raise crop income for farmers increasing food expenditure and - potentially - the calories and micronutrients intake (Pieters et al., 2013; Kassie et al., 2011);

Food Utilization

higher income availability favors a more diversified pattern of consumption (Pauw and Turlow, 2010) and reduces the dependency from staple food;

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● □

Food Availability

ATs increase productivity (supply of food per unit of agricultural land) and therefore the overall domestic production (Feder et al., 1985);

Food Access

higher productivity and lower production costs raise crop income for farmers increasing food expenditure and - potentially - the calories and micronutrients intake (Pieters et al., 2013; Kassie et al., 2011);

Food Utilization

higher income availability favors a more diversified pattern of consumption (Pauw and Turlow, 2010) and reduces the dependency from staple food;

Food Variability

ATs enhance yield stability reducing risk of crop failure and exposure to shocks and improving the resilience capacity (Barrett, 2010; Cavatassi et al., 2011);

Magrini and Vigani, 2014

Technology Adoption and Food Security

Food Availability

ATs increase productivity (supply of food per unit of agricultural land) and therefore the overall domestic production (Feder et al., 1985);

Food Access

higher productivity and lower production costs raise crop income for farmers increasing food expenditure and - potentially - the calories and micronutrients intake (Pieters et al., 2013; Kassie et al., 2011);

Food Utilization

higher income availability favors a more diversified pattern of consumption (Pauw and Turlow, 2010) and reduces the dependency from staple food;

Food Variability

ATs enhance yield stability reducing risk of crop failure and exposure to shocks and improving the resilience capacity (Barrett, 2010; Cavatassi et al., 2011);

Magrini and Vigani, 2014

Technology Adoption and Food Security

Matching Techniques

Why do we use Matching Techniques?

- Matching techniques permit to address the potential existence of selection bias;
- The decision of the maize farmers to adopt agricultural technologies is likely to be driven by a series of characteristics which are also correlated to the food security indicators (e.g. education, access to credit, extension services, ect);
- The most applied Matching Technique in this strand of literature is the Propensity Score Matching (e.g. Mendola, 2007, Kassie et al. 2011. Amare et al., 2012; Kassie et al.; 2012);

Matching Techniques (2)

How does it work?

• we focus our analysis on the Average Treatment Effect on the Treated (ATT) because it can be considered the main parameter of interest (Becker and Ichino, 2002).

$$\tau_{ATT} = E(Y(1) - Y(0) \mid T = 1) = E[Y(1) \mid T = 1] - E[Y(0) \mid T = 1]$$

 The key to estimate the ATT is to assume that once we control for a vector of observable variables X, the adoption of technologies is random (Caliendo and Kopeinig, 2008):

 $\tau_{ATT}(X) = E(Y(1) - Y(0) \mid X) = E[Y(1) \mid T = 1, X] - E[Y(0) \mid T = 1, X]$

• The limitation is that we cannot control for unobservable heterogeneity. However, this assumption is not more restrictive than the weak instrument assumption in case of Instrumental Variable or Heckman procedure used with cross-sectional datasets (Jalan and Ravallion, 2003).

Magrini and Vigani, 2014

first step

A probability model is estimated to calculate each household's probability (P(X)) to adopt the technology, i.e. the propensity score. We use a logit regression

Image: A matrix

first step

A probability model is estimated to calculate each household's probability (P(X)) to adopt the technology, i.e. the propensity score. We use a logit regression

second step

Adopters and non-adopters are matched according to their PSM. Different ways to search for the nearest individual to be matched: nearest neighbour (NN) matching, caliper (or radius) matching and kernel matching. We use NN(3) as benchmark estimation

first step

A probability model is estimated to calculate each household's probability (P(X)) to adopt the technology, i.e. the propensity score. We use a logit regression

second step

Adopters and non-adopters are matched according to their PSM. Different ways to search for the nearest individual to be matched: nearest neighbour (NN) matching, caliper (or radius) matching and kernel matching. We use NN(3) as benchmark estimation

third step

We test 1) the **common support** condition and 2) the **balancing property** to verify that the differences in the covariates between A/NA have been eliminated after matching

first step

A probability model is estimated to calculate each household's probability (P(X)) to adopt the technology, i.e. the propensity score. We use a logit regression

second step

Adopters and non-adopters are matched according to their PSM. Different ways to search for the nearest individual to be matched: nearest neighbour (NN) matching, caliper (or radius) matching and kernel matching. We use NN(3) as benchmark estimation

third step

We test 1) the **common support** condition and 2) the **balancing property** to verify that the differences in the covariates between A/NA have been eliminated after matching

fourth step

We calculate the ATT comparing the food security outcomes for the matched sample

Magrini and Vigani, 2014

Technology Adoption and Food Security

The Sample

- We use data from the household and agriculture questionnaires of the 2010/2011 Tanzania National Panel Survey (TZNPS) which is part of the LSMS-ISA of WB;
- The original sample consists of 3,924 households. In our analysis, we use a sub-sample of 1543 households which contains households cultivating maize during the long rainy season (Masika) all over the country, with the exclusion of Zanzibar.
- For improved seeds the treated HHs are 211 (13.7%) while for inorganic fertilizers the treated HHs are 335 (21.7%)

9 / 20

The Sample

- We use data from the household and agriculture questionnaires of the 2010/2011 Tanzania National Panel Survey (TZNPS) which is part of the LSMS-ISA of WB;
- The original sample consists of 3,924 households. In our analysis, we use a sub-sample of 1543 households which contains households cultivating maize during the long rainy season (Masika) all over the country, with the exclusion of Zanzibar.
- For improved seeds the treated HHs are 211 (13.7%) while for inorganic fertilizers the treated HHs are 335 (21.7%)

The Treatment Variables Improved Seeds binary variable equal to 1 if at least one maize plot was sown with improved varieties; and 0 otherwise Inorganic Fertilizers binary variable equal to 1 if inorganic fertilizers were used at least on one plot; and 0 otherwise

The Outcome Va	ariables
General	• Total Consumption Expenditure (THS)
Food Availability	• Yields (mean Kg/acres of harvested maize)
Food Access	 Food Consumption Expenditure (THS) Caloric Intake (average daily intake per adult-equivalent)
Food Utilization	 Diet Diversity (Nr Items Consumed) Share of Staple Food (wrt total calories)
Food Variability	 Vulnerability to Poverty (V_{it} = Pr(C_{i,t+1} < Z X_{it})) Storage (=1 if HH is storing for food purposes)

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

E 990

Correlations between Food Security Indicators

	Total Exp.	Yield	Food Exp.	Caloric Intake	Diet Div.	Staple Sh.	Storage	VEP
Total Exp.	1							
Yield	0.08	1						
Food Exp.	0.93	0.06	1					
Caloric Intake	0.49	0.02	0.57	1				
Diet Div.	0.41	0.09	0.41	0.25	1			
Staple Sh.	-0.44	-0.08	-0.40	-0.08	-0.40	1		
Storage	0.13	0.07	0.12	0.08	0.14	-0.09	1	
VEP	-0.55	-0.03	-0.49	-0.23	-0.24	0.31	-0.11	1

Source: Authors' calculation from TZNPS 2010/2011

Magrini and Vigani, 2014

Technology Adoption and Food Security

3rd AIEAA Conference

イロト イヨト イヨト

e 11 / 20

Ξ

590

First stage - PSM Estimation

	Impr	oved	Seed	Inorgai	nic Fe	rtilizer
	Coeff		SE	Coeff		SE
HH Characteristics						
HH Size	0.124	**	0.060	-0.131	**	0.052
HH Size sq.	-0.001		0.003	0.003		0.002
HH Head Age	-0.049		0.032	0.056	*	0.030
HH Head Age sq.	0.000		0.000	0.000		0.000
HH Head Sex	0.145		0.216	0.101		0.186
HH Head Primary	0.792	***	0.240	1.218	***	0.218
HH Head Secondary	1.591	***	0.347	1.845	***	0.327
HH Head Above Secondary	3.584	***	1.309	1.639		1.320
Structural						
Distance - Main Road (Km)	-0.016	***	0.006	-0.020	***	0.004
Distance - Input Market (Km)	-0.008	***	0.002	0.004	***	0.001
Tropic-Warm Area	-0.677	***	0.251	0.322		0.219
Avg Total Rainfall (mm)	-0.001	***	0.000	0.002	***	0.000
Elevation (m)	0.000	*	0.000	0.219		0.168
Nutrient Availability	-0.555	***	0.182	0.002	***	0.000
Drought or Flood (past 5 yrs)	-0.216		0.234	-0.410	*	0.229
Technical						
Ln Maize Planted Area	0.931	**	0.424	0.675	**	0.344
Ln Maize Planted Area sq.	-0.341	**	0.148	-0.178		0.116
Extension Services	0.632	***	0.199	1.445	***	0.173
Access to Credit	0.300		0.261	-0.042		0.242
Constant	0.937		0.996	-7.67	***	0.958
Observation		1543			1543	
Pseudo_R2		0.151		< D 1	0.207	¥ >
014 Technology Ad	doption a	nd Fo	od Secu	rity	3	Brd AIEAA Conference

Magrini and Vigar

12 / 20

Common Support

3rd AIEAA Conference

イロト イポト イヨト イヨト

のへで 13 / 20

э

Balancing Property

		Improved Seeds	Inorganic Fertilizers
Mean Absolute Bias	Unmatched	32.168	30.869
	Matched	7.531	9.525
Absolute Bias Reduction		76.587	69.143
Pseudo-R2	Unmatched	0.151	0.207
	Matched	0.026	0.040
P-Values	Unmatched	0.000	0.000
	Matched	0.707	0.084

Source: Authors' calculation from TZNPS 2010/2011

Magrini and Vigani, 2014

Technology Adoption and Food Security

3rd AIEAA Conference

イロト イヨト イヨト イヨト

き - クへで 14 / 20

э

ATTs Calculation

Benchmark Estimation using NN(3)

		lm	prove	ed Seed	Inorganic Fertilizer			
		Treatm	ent	SE	Г	Treatment	SE	Г
	Total Expenditure	0.184	***	0.039	1.55	0.093 **	0.037	1.20
Availability	Yield	246.260	***	82.112	1.65	163.487 ***	19.782	2.20
Access	Food Expenditure	0.161	***	0.037	1.45	0.063 *	0.037	1.10
	Caloric Intake	0.080	***	0.031	1.25	0.066 **	0.029	1.15
Utilization	Diet Diversity	0.246	***	0.073	1.30	0.294 ***	0.078	1.40
	Staple Share	-0.042	***	0.010	1.45	0.005	0.010	1.00
Stability	Storage	0.104	***	0.033	1.45	0.111 ***	0.030	1.55
	Vulnerability	-0.021	***	0.007	1.30	-0.001	0.006	1.00

Source: Authors' calculation from TZNPS 2010/2011

Magrini and Vigani, 2014

Technology Adoption and Food Security

3rd AIEAA Conference 15

15 / 20

Robustness Tests

We also replicate the exercise using:

- Kernel estimator;
- Genetic Matching with multiple matches (in terms of covariates)
- simple OLS estimation

Results are generally confirmed except

- For improved seeds: Caloric Intake and Storage are positive but not significant
- For inorganic fertilizer: Vulnerability to Poverty is negative and significant

Conclusions

- Overall, the impact of maize technologies on food security is positive and significant;
- Improved seeds show a stronger effect on Food Availability and Food Access;
- For **Food Utilization** inorganic fertilizers show a higher impact on diversity but they do not reduce the staple starch dependency;
- For **Food Variability** improved seeds reduce the HH probability to be poor in the near future while both technologies impact positively on HH resilience, favoring storage for consumption purposes.

THANK YOU FOR YOUR ATTENTION !!!

emiliano.magrini@fao.org

Technology Adoption and Food Security

3rd AIEAA Conference

글 돈 옷 글 돈

3 18 / 20

590

Balancing Property - Improved Seeds

		Unmate	ched		Matched				
Covariate	μ Ad .	μ Non-Ad.	Diff	% Bias	μ Ad.	μ Non-Ad.	Diff	% Bias	
HH Size	6.398	5.505	0.894	40.785	5.772	5.894	-0.122	-4.106	
HH Size sq.	52.493	39.475	13.018	31.946	42.035	46.475	-4.440	-8.957	
HH Head Age	47.479	48.770	-1.291	-11.571	47.124	49.202	-2.078	-13.622	
HH Head Age sq.	2482.588	2630.213	-147.625	-12.510	2451.731	2650.730	-198.999	-12.536	
HH Head Sex	0.825	0.746	0.078	25.841	0.779	0.767	0.012	2.983	
HH Head Primary	0.735	0.652	0.082	24.595	0.779	0.741	0.038	9.142	
HH Head Secondary	0.123	0.047	0.077	46.744	0.048	0.052	-0.004	-1.924	
HH Head Above Secondary	0.010	0.001	0.009	28.011	0.000	0.000	0.000	0.000	
Distance - Main Road (Km)	13.283	21.828	-8.546	-53.501	15.201	17.979	-2.778	-12.084	
Distance - Input Market (Km)	57.208	86.071	-28.863	-74.420	67.910	63.937	3.973	7.569	
Tropic-Warm Area	0.531	0.643	-0.113	-32.932	0.524	0.550	-0.026	-5.161	
Avg Total Rainfall (mm)	711.924	807.875	-95.951	-63.835	710.324	700.128	10.196	4.063	
Elevation (m)	1063.592	968.668	94.924	26.422	1111.593	1089.757	21.836	4.634	
Nutrient Availability	1.469	1.662	-0.193	-56.692	1.483	1.394	0.089	17.696	
Drought or Flood (past 5 yrs)	0.133	0.132	0.001	0.238	0.117	0.146	-0.029	-8.901	
Ln Maize Planted Area	1.135	1.110	0.024	5.221	1.104	1.046	0.058	9.459	
Ln Maize Planted Area sq.	1.673	1.663	0.010	0.762	1.586	1.425	0.162	9.396	
Extension Services	0.261	0.135	0.126	49.391	0.186	0.178	0.008	2.060	
Access to Credit	0.128	0.077	0.051	25.772	0.103	0.077	0.027	8.801	

Magrini and Vigani, 2014

・ロト ・日 ・ ・ 田 ・ ・ 田 ・

3rd AIEAA Conference

Э

Balancing Property - Inorganic Fertilizers

	Unmatched					Matched				
Covariate	μ Ad .	μ Non-Ad.	Diff	% Bias	μ Ad.	μ Non-Ad.	Diff	% Bias		
HH Size	5.528	5.654	-0.126	-5.733	5.416	4.922	0.493	16.815		
HH Size sq.	40.579	41.442	-0.863	-2.118	37.890	33.570	4.320	9.104		
HH Head Age	47.508	48.894	-1.387	-12.429	48.279	49.585	-1.306	-8.198		
HH Head Age sq.	2475.979	2647.199	-171.220	-14.509	2583.448	2726.695	-143.247	-8.382		
HH Head Sex	0.800	0.745	0.055	18.118	0.753	0.737	0.016	3.699		
HH Head Primary	0.776	0.633	0.144	42.990	0.763	0.755	0.008	1.874		
HH Head Secondary	0.102	0.045	0.057	34.621	0.073	0.046	0.027	10.504		
HH Head Above Secondary	0.003	0.002	0.001	4.267	0.000	0.003	-0.003	5.754		
Distance - Main Road (Km)	15.400	22.119	-6.719	-42.062	16.710	17.329	-0.619	-2.936		
Distance - Input Market (Km)	84.326	81.513	2.814	7.254	82.261	86.212	-3.951	-6.215		
Tropic-Warm Area	0.442	0.680	-0.238	-69.569	0.489	0.580	-0.091	-18.228		
Avg Total Rainfall (mm)	853.081	778.580	74.501	49.565	838.502	842.569	-4.066	-2.142		
Drought or Flood (past 5 yrs)	0.090	0.144	-0.054	-22.742	0.105	0.102	0.003	0.867		
Nutrient Availability	1229.946	912.791	317.155	88.281	1154.676	1107.115	47.561	10.285		
Elevation (m)	1.710	1.615	0.095	28.022	1.662	1.601	0.061	12.842		
Ln Maize Planted Area	1.178	1.096	0.081	17.707	1.158	1.034	0.124	18.241		
Ln Maize Planted Area sq.	1.788	1.630	0.158	11.564	1.797	1.495	0.301	14.501		
Extension Services	0.343	0.099	0.244	95.983	0.105	0.155	-0.050	-16.346		
Access to Credit	0.113	0.076	0.037	18.972	0.078	0.040	0.038	14.046		

Magrini and Vigani, 2014

Technology Adoption and Food Security

◆□ ▷ ◆ 문 ▷ ◆ 토 ▷ ◆ 토 ▷ y 3rd AIEAA Conference

nce 20 / 20

590

Э